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Abstract 

The goal of Fine Motion Planning is to generate provable robot programs in the pres- 

ence of control, sensing, and model uncertainty. In particular, fine motion planning 

includes part mating sequences that require force control. We first present a new 

result in the formalism of fine motion planning that, embedding the knowledge of the 

termination condition in the construction of preimage, augments the size of preimage. 

We, then, present new results on the characterization of control uncertainty. 

Define forward projection of a state to be the union of all possible states such that 

there exists a trajectory connecting the two states for controls that remain within 

a given model of control uncertainty. Computing forward projection is a problem 

in differential inclusion. Previous work in this area by Blagodat-skikh and Filippov 

(1986) allows one to compute the boundary of attainable set that are states reachable 

at a given instant. 

We consider computing the boundary of forward and backprojection on smooth 

sets of an arbitrary but autonomous control scheme. The control equations include 

state-dependent differential equations governing general rigid body motion, in contact 

with other rigid bodies or moving freely. We characterize the boundary as an integral 

manifold of a Hamilton-Jacobi equation (Butkovskii, 1982). This integral manifold is 

a solution of a system of 2n ordinary differential equations where n is the dimension 

of the state space. We give conditions for the existence and uniqueness of the local 

boundary of the forward and backprojection of a state described by a regular closed 

subset. The Global boundary may have several connected components. Some of these 

are subsets of the boundary of perturbations of the unstable and the stable manifold 

of saddle type singularity. We also give conditions for the existence and uniqueness of 

the local boundary of the perturbations of the unstable and the stable manifold. Thus, 

when invariant subsets of the differential inclusion problem are trivial, our conditions 

imply locally finite representation and computability of control uncertainty. 
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Chapter 1 

Introduction 

Fine Motion Planning, also known as Motion Planning with Uncertainty, considers 

a system whose state evolves according to some known physical law and is equipped 

with sensors that allows it to ascertain its state at any instant. Neither parameters 

describing the evolution of the state are known exactly, nor do sensors determine the 

state precisely. However, it is conceivable that these errors follow some probabilistic 

distribution. It is also possible to add an additional constraint that the environment 

in which the system evolves can only be described approximately, perhaps given by 

some known distribution. We consider then the following geometric planning problem: 

The system starts somewhere, it can ascertain its starting state using its 

sensors; it needs to get to some goal; it must synthesize a control law or a 

sequence of control laws to reach the goal and some evaluation function or 

a sequence of evaluation functions on the set of sensing queries that can 

be interpreted as having attained the goal or intermediate goals without 

knowing the environment, the evolution of control trajectory, or sensing 

queries in their respective distributions a-priori. 

There are several variants of the fine motion planning problem. First, let us assume 

that the errors in evolution parameters, sensing, and the environment are described 

by uniform density distributions - equal probability over some closed and bounded 

domain.  If for all possible evolutions, sensing queries, and the environment within 
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their bounds the system is guaranteed to reach and terminate in the goal, it is called 

Strongly Guaranteed Plan. If there exists at least one evolution of the system, a set 

of sensing queries, and the environment within prescribed uniform density distribu- 

tions such that the system reaches and terminates in the goal, the plan is a Weakly 

Guaranteed Plan. A variant of a weakly guaranteed plan is also called Error De- 

tection and Recovery. Finally, consider that the errors are instead described by an 

arbitrary probabilistic distribution. The success of reaching and terminating in the 

goal can possibly be probabilistically characterized and such plans would be Proba- 

bilistic Plans. In this general probabilistic sense, strongly guaranteed plans are those 

that have one hundred percent probability of success and weakly guaranteed plans 

are those that have some non-zero probability of success when errors are known to 

belong to some uniform density distribution. We consider strongly guaranteed plans 

in a perfectly well known environment - one hundred percent probability of success 

when uncertainty in sensing and control belong to uniform density distribution. 

1.1     Results 

The domain of Strongly Guaranteed Fine Motion Planning with uncertainty in sensing 

and control is described by the following: 

• Shape of the Moving Objects and Obstacles, 

• Configuration Space, 

• Control Scheme and its Model of Uncertainty, and 

• Model of Sensing and its Uncertainty. 

The set of independent parameters that uniquely determine the position and orien- 

tation of all moving objects define the configuration space. The shape of the moving 

objects and obstacles determine a subset of the configuration space called valid con- 

figuration space where the rigid body extent of the moving objects do not violate 

the rigid body extent of the obstacles. The valid configuration space consists of the 

free space where the moving body does not touch any of the fixed obstacles and the 
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boundaries of the configuration space obstacles where the moving body touches one 

or several of the fixed obstacles. 

A nominal behavior of a feedback control system either in the free space or on the 

boundaries of the configuration space obstacles is described by a system of differential 

equations. We consider autonomous differential equations: the single valued map that 

assigns to each state a velocity (acceleration) depends only on the state of the system 

but not on time. A possible perturbations of a nominal feedback control system is 

described by a multivalued map that assigns to each state a subset of the velocities 

(accelerations). 

The uncertainty in sensing is described similarly by a multivalued map that assigns 

to every point in the domain a subset of the range: the subset of possible sensing 

values that a sensor at a configuration is likely to return. 

The main contributions of the thesis are presented in two subsections following a 

subsection on the notations and definitions. 

1.1.1    Preliminaries 

Let M denote a smooth subset of the valid configuration space. Examples of such 

subsets include spaces where a moving object touches obstacles. If we consider second- 

order differential equations, then for notational simplicity we use M itself to denote 

TM, the tangent bundle of M. Let the domain for fine motion planning be a compact 

subset V of M. 

A control statement CS determines uncertainty in a control scheme defined by 

po. y __,, rj^yjr^ a multivalued section of the tangent bundle. Let all absolutely con- 

tinuous solutions, <j>\ R x V -> M, to the corresponding Cauchy problem (see equa- 

tion 2.26) at s G V be a set denoted $(s). Let J^ denote the interval of time for 

which a solution <f>s is defined over V. The orbit of a solution 4> at a point s is the set 

{4>(t,s)\t £ J^Y 
Let the model of uncertainty in sensing be also defined by a multivalued map 

fc*: M —+ E, where E is the space of measurements. Let us denote a measurement by 

m* so that m*(s) G /C*(s). Let m£s denote sensing measurements along a trajectory 

<£s, i.e., m!:R -» E: t i-» m*(^(«,s)) G JC'(<f>{t,s)).  Note that m;s need not be a 
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continuous function of time. A history of sensing measurement from time 0 to i is 

defined as mJjO,*] = {m*{4>(t',s))\t' G [0,*]}. 

A termination condition TC determines a termination predicate tp, a boolean 

valued function, defined on the set of subsets of the space of measurements, i.e., 

tp:2E —► {true, false}. 

A motion command M is a tuple (CS,TC) consisting of a control statement CS 

and a termination condition TC. 

1.1.2    One-Step Preimage 

Let I and Q = {Ga} be subsets of V - a set of initial configurations and a set of goal 

configurations, respectively. Then, Fine Motion Planning inputs are 

{M,V,F°,/CM,0}. (1-1) 

Define the Backprojection of a goal Q for a control statement CS to be {s|V</>s G 

$(s),3* > 0,^(t,s) G G}- They are states such that all possible evolutions fol- 

lowing the control statement CS reach the goal at some time. Define a predicate 

Achieve^, M,I) encoding the condition that a motion command M is guaranteed 

not only to reach G but also terminate in Q whenever the starting configuration is in 

I: 

Achieve^,M, J) = {s G X|Vc/>s G $(s), 

(0    Let   il = {t£ J"JVm;s[0,*],tp(m;s[0,*]) = true} 

_ f supiJto),   if 0 = 0; 

\ inf(£l),       otherwise. 

lim (j)s(t) G G, 
t—*tf 

(it)   0 < t < tf, 3m;j(M], tp(m;s[(M]) = true 

=* Mt) € G} (I-2) 

A One-Step Preimage VM{G) of a goal Q = {Ga} are those points that satisfy 

Achieve^, M,PM(S)). 
A maximal preimage V&AX(G) are all those points s that 

satisfy Achieve^, M, {s}). A simple illustration of a preimage is given by exam- 

ple 2.1(a). We present the following results on One-Step Fine Motion Plans: 
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• A precise construction of a preimage accounting for possible initial states, and 

• An observation that embedding the knowledge of a termination predicate in the 

construction of a preimage augments the size of the preimage 

(see section 2.4). A definition of preimage was initially given by Lozano-Perez, Mason, 

and Taylor [LMT 84]. Though our definition, developed along the lines of a definition 

given by Latombe [Lat 88, Lat 91], also includes classical control theoretic fine motion 

plans of the kind considered in example 1.1 and 2.1(c). That the set of initial states 

determines possible interpretations of sensory measurements is an observation given 

by Lozano-Perez, Mason, and Taylor [LMT 84], but the fact that the termination 

condition also affects possible interpretations is a new observation. As a result, a 

significantly larger preimage can be constructed. An illustrative example is given 

in Section 2.4. Some of these results and examples have appeared earlier [LLS 89, 

LLS 91, Lat 91, SL 91]. 

1.1.3    Characterization of Control Uncertainty 

A set of perturbations of a control equation determines a differential inclusion problem 

given by the map F°. A differential inclusion problem is a direct generalization of 

ordinary differential equations - instead of just a curve whose tangent is given, a set of 

curves are solutions whose tangents lie in the image of a multivaled map. We consider 

solutions that are absolutely continuous functions: the solution is continuous and the 

set of discontinuities of the derivative of the solution is a set of measure zero. Consider 

those states reachable by a possible evolution. They are called a Reachable Set. Two 

kinds of reachable sets can be defined: an Attainable Set contains states reachable 

at any given instant, and a Forward Projection Set is the union of states reachable 

at all future times including the present. We consider determining the boundary of 

such sets: SA(t, J), the boundary of attainable set at time t for initial states in 2", 

and 5FP(T), the boundary of the forward projection of initial states in 1. As a 

consequence of characterizing 6FP(1), the boundary of the forward projection, we 

characterize the boundary of the backprojection of a goal Q. 
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When multivalued map F° is non-empty, closed, Lipschitzian, and autonomous, 

the set of absolutely continuous solutions $(s) are path connected [StWu 91]. Let H 

be a smooth Hamiltonian function defined on the cotangent bundle T*M of M. A 

subset of the cotangent bundle T*M where the Hamiltonian H remains constant is 

called a characteristic of H and is denoted by C. Any subset of M whose covariant 

section is a subset of the characteristic set C is called an Integral Manifold. It is a 

property of the Hamiltonian vector field XH that their time evolutions preserve the 

integral manifolds and the characteristic set C of H. 

Let H be a Hamiltonian defined by H: T*M -» R: w* £ swpVs€Fo(s)u;*(vs). Two 

results given by Blagodat-skikh and Filippov [BIFi 86], and Butkovskii [But 82] show 

that the solution set of the Hamiltonian vector field XH of H describe the boundary 

of the attainable set and the boundary of the forward projection, respectively, when 

the initial state X is a state {s}. 

Our first result, a theorem characterizing the initial set that locally defines the 

boundary of the forward projection and the boundary of the backprojection of a regu- 

lar closed set X, is a direct application of the Hamilton-Jacobi theorem to Hamiltonian 

systems: 

Theorem 1.1 Let zero be a regular value of a smooth map fj'-M —► R so that 

81 = fjY(0) is the boundary of the set X. Let dfr- M -* T*M be the corresponding 

covariant section. Let zero be a regular value of the smooth map faxHo dfc: M —► 

R2. S ,_ (y^g^ H 0 dfx{s)). Then, A = (fTxHo rf/x)_1(°) is a well-defined (n - 2)- 

dimensional submanifold and a subset of the characteristic set C. 

The integral manifold of Hamiltonian Vector Field XH with initial set A,-, an 

appropriate subset of A, locally defines the boundary of the forward projection (see 

section 3.2.6). The local boundary of the backprojection is similarly defined with the 

negative set valued map -F° and a subset A, of the corresponding A (see Figure 3.2 

and Example 3.2 for the initial manifold A of a backprojection boundary). 

Consider a single valued continuous time dynamical system [PalMel 82]. The u- 

Limit Set of a point u are those points s € M for which there exists a sequence 

t{ -+ oo such that ^(fc,u) -► s. The a-Limit Set is defined analogously for U -► -co. 
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It is apparent that the u- Limit Set and a-Limit Set can be defined for orbits of a 

point and the cu-Limit Set of a point for a field X is a-Limit Set for the field —X. If 

s is a singular point of a field X, then the set of points of M which have s as u-Limit 

Set is called the Stable Manifold denoted W*(s). The unstable manifold Wu(s) is 

defined similarly as those points in M whose a-Limit Set is s. The Stable Manifold 

Theorem [PalMel 82] establishes that they are Cr injectively immersed manifolds if 

the vector field is Cr. The stable manifold of a sink singular point is also called the 

basin of attraction of the sink. The local stable (unstable) manifolds W'(s) (Wr
u(s)) 

for a ball BT(s) centered at s of radius r > 0 are those points in the stable (unstable) 

manifolds whose positive (negative) orbits remain in the ball Br(s). The local stable 

and unstable manifolds are topologically embedded discs. 

Consider now the differential inclusion problem s € F°(s). If the orbit of all 

possible absolutely continuous functions that are solutions to the differential inclusion 

problem remain in a subset, then the subset is a strongly invariant subset. If there 

exists at least a solution such that its orbit remains in the subset, then it is a weakly 

invariant subset. Consider a point s G V such that 0 € F°(s). A possible flow is 

the trivial one - a constant map, <f>(t, s) = s, defined for all times. Such points are, 

therefore, at least weakly invariant. Let states s € V such that 0 € F°(s) be called 

Singular Invariant Subset. We denote the union of all such singular invariant subsets 

by 2. Section 3.2.3 considers conditions when such subsets can be uniformly labeled 

as of type sink, source, or saddle. 

Now, consider computing the forward projection of a singular invariant set. This 

boundary of the forward projection is also the boundary of the perturbation of un- 

stable manifolds. The perturbation of stable manifold is the forward projection of 

the negative field s G -F°(s). If we consider the differential inclusion problem as an 

instance of a set of perturbations of an arbitrary autonomous dynamical system, then 

the basin of attraction of a sink singular invariant subset is a natural candidate for the 

preimage. If the sink singular invariant subset is not strongly invariant, some strongly 

invariant subset in the basin of attraction containing the sink singular invariant sub- 

set is a goal of the basin of attraction with a perpetually false termination predicate. 

Some components of the boundary of such basins of attraction are the boundary of 
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perturbations of the stable manifold. In addition, also consider the forward and the 

back projection of a regular closed set. The global boundary may have components 

that is the boundary of perturbations of the unstable manifold of the singularities of 

the type saddle. Such additional components are present in the description of the 

forward projection of points that lie in the perturbation of the stable manifolds of the 

saddle. Such components of the boundary of the forward and the back projection are 

distinct from the local component given by the Theorem 1.1. We consider computing 

the local boundary of the perturbation of stable and unstable manifolds of singular 

invariant subsets, particularly those of the type saddle. 

We show that when the boundary, 6F°, of a regular, closed, non-empty, multi- 

valued map F° is smooth, the singularities of the corresponding Hamiltonian vector 

field XH defined above are degenerate. Consider instead, regular, convex polytopes as 

the boundary of the image of the map F° at all points. Then, there exists Hamil- 

tonian vector fields XH that are non-degenerate at singularities. With additional 

conditions given in the Proposition 1.1 below, the boundary of the forward projection 

of a singular invariant set is characterized by Theorem 1.2. 

Let the faces of the convex polytope in the image of the map F° be denoted 

V ■ . The linear span of all vector fields in a face determines a distribution. We 

assume that each such distribution is integrable in the sense of Frobenius [Spiv 79]. 

Let Zj denote the jth singular invariant set. Let 7? ..im denote a face of the boundary 

SZj of the singular invariant set corresponding to the face V^...im (see figure 1.1). 

Consider a point s on the face 7? ..im. Let A = DX(s) be the linearization of a field 

X such that X € Vh...im in some local neighborhood, X(s) = 0, and s is a hyperbolic 

singularity of X. The linear mapping A has a natural splitting into Au and A„ the 

expansion and contraction part respectively, such that TSM = Eu 9 Es, Au = A\E«, 

and As = A\E>. Each of these subspaces Eu and Es are invariant. 

Proposition 1.1 Let point s lying on 7?„.ira be a hyperbolic singularity of X. If 

1.  The unstable subspace Eu is a supporting subspace to Zj at s, 
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A Supporting 
Quadrant 
of Z  at s 

Figure 1.1: Polytope Neighborhood of a Vector Field and Transition Hypersurfaces 

2. A codimension one invariant subspace denoted ELi of stable subspace Es is con- 

tained in the tangent space TT/ irn, and the remaining one-dimensional sub- 

space, Es 0 Eti, of the stable subspace is not contained in the tangent space 

TTj  ■ 

then, the point s belongs to the zero set of the characteristic C of the function H, i.e., 

H(s, a) = 0, where ker(a) = Eu ® Es_u a ^ 0. 

Section 3.2.10 contains more details on further splitting of each of the subspaces Es 

and Eu into invariant subspaces and its implications on the structure of the codimen- 

sion one invariant subspace Eil. 

Corollary 1.1 If the points on two segments %\...im and T£ k lie in the zero set of 

the characteristic C of the function H as in Proposition 1.1, then points on a segment 

in their intersection also lie in the zero set of the characteristic C. 

Now, consider defining locally the boundary of the forward projection of a singular 

invariant set. 

Theorem 1.2 Let Aj be a subset ofSZj so that the conditions of the Proposition 1.1, 

or the Corollary 1.1 are satisfied on Aj. In addition, assume that Eu(s) is a strictly 
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Figure 1.2: Hatched region is Preimage of Rectangle DEFG for TC={false} 

supporting subspace on Aj. Then, for some r > 0, the local unstable manifold W?(Aj) 

is an integral manifold and defines the boundary of the forward projection of Z,. 

The notion of strictly supporting subspace is similar to that of a supporting plane to 

a convex polytope. We give a precise definition in the Section 3.2.9. 

Example 1.1 Consider the Euclidean plane M = R2. Consider a neighborhood F° 

defined by the intersection of the positive half spaces of the following four hyperplanes: 

Vx   =   {(-(x2-x)-ex)^-(y2-y)^,eydx-exdy}, 

V2   =   {-(x2-x)— + (-(y2-y) + ey)—,-eydx-exdy}, 
dx dy' 

V3   =   {(-(x2-x) + ex)^-(y2-y)^-eydx + exdy}, (1.3) 
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V4   =   {-(x2-x)— + (-{y2-y)-ey) — ,eydx + exdy}, 

where ex,ey > 0 are constants. This is a neighborhood of a nominal vector field 

— (x2 — x)~^ — (y2 — y)j-. The singular invariant sets are regions 2(, i = 1,4, centered 

at (0,0), (1,0), (1,1) and (0,1), respectively. Region ZY is of type source, Z3 is of 

type sink, and Zi, Z4 are of type saddle. The boundary of the backprojection of the 

sink Z3 is locally null and it is possible to verify that Z3 is not strongly invariant 

subset. 

However, it can also be verified that the rectangle DEFG containing Z3 in Fig- 

ure 1.2 is a strongly invariant subset (see conditions of Aubin and Cellina [AubCel 84] 

and Section 3.2.6). If TC={false} is the termination condition, then the open in- 

finite hatched subset of the plane is a basin of attraction of the strongly invariant 

subset DEFG, and therefore, a preimage. Notice that the boundary of the basin of 

attraction is a piecewise smooth segment labeled ABC which is a component of the 

boundary of perturbations of the stable manifold of the saddle singularities Z2 and 

Z4 (see example 3.4 for more details). 

1.2    Motivation 

An autonomous robot must plan its actions from a sufficiently high-level instruc- 

tions. The high-level instructions require geometrical tools to translate them to a 

manipulator-level program. Significant results in the problem of motion planning to 

avoid obstacles have been achieved in the last decade [Lat 91]. However, sensors are 

never perfect and if a controller could be designed with perfect tracking ability and 

the models could be manufactured/measured perfectly and placed in the environment 

with preciseness, motion planning as given above would suffice. In fact, if the relative 

magnitude of the errors remain small in relation to the closeness of the representative 

path with the obstacles, such programs would still work. Examples are the com- 

monly available painting and welding robots that track representative paths that are 

offset from the fixed objects a distance reflecting the aggregate expected error. An- 

other example is a peg assembly by Robot World™ using RISC (Reduced Intricacy 



12 CHAPTER 1.   INTRODUCTION 

in Sensing and Control) [CanGol] that reduces execution errors with just-in-time 

sensing to within l/lOOO"1 of an inch - better than the aggregate sum of tolerance 

of parts, fixturing, and errors in Robot World™. However, in many applications the 

preciseness with which a pre-planned path can be executed in relation to the model 

of the environment and the specification of the goal is several orders of magnitude 

worse. Such applications include contact type tasks such as dextrous manipulation, 

precision assembly requiring force control, and mobile robot navigation. The level of 

resolution at which such applications are executed also entails the impreciseness in 

sensing {i.e., localization), geometrical tolerances of the shape and size of the envi- 

ronment, the mechanics of motion in the presence of friction, and the transition from 

one contact type to another. In presence of all these uncertainties, the planner should 

determine if an objective given by the high level instructions can be accomplished and 

determine such a plan. 

1.2.1    A Motivational Example 

Some typical examples are those of a mobile robot or a planar peg-in-hole assembly. 

We consider a situation in the planar peg-in-hole problem when the equations of 

motion are described on a constrained surface - in the absence of any constraint, our 

example reduces to the motion of a peg in a free floating space. 

The peg is a moving body described as a polygon and the hole is an obstacle also 

described as a polygon as shown in Figure 1.3(a). The corresponding configuration 

space obstacle shown in Figure 1.3(b) is a subset of a three-dimensional Euclidean 

space for the two-degrees-of-freedom of translation and one-degree-of-freedom of ro- 

tation of the peg in the plane. The configuration space obstacle is described by 

several sets of equations each describing a smooth subset of the obstacle. All to- 

gether they describe a valid subset of the configuration space - the region where the 

peg's rigid body extent does not violate the rigid body extent of the obstacles. In 

effect, the region where the peg's spatial extent intersects with the spatial extent of 

the obstacles is removed from the total space to obtain a description of the valid 

configuration space. The valid configuration space is made up of subsets of smooth 
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(x,y,Q) 

-»  X 

(a) (b) 

Figure 1.3: Configuration Space of a Typical Peg-in-Hole Assembly 

configuration space constraint surfaces, each such smooth surface is defined by zero 

or finitely many equations. Let us denote such smooth configuration space constraint 

surfaces by M. Consider a specific example of a configuration space constraint sur- 

face, of type A in the notation of Lozano-Perez [Loz 83], where an edge of the moving 

body is in contact with a vertex of an obstacle. The configuration of the center of 

mass of the moving body denoted q = (x,y,6), in type-A contact is constrainted to 

<j(q) = xsm(9) - ycos(9) + a = 0 in an appropriate choice of coordinate system (see 

section 2.1.2). For the rest of the thesis, we consider one such smooth subset M as 

our domain. 

Let a configuration constraint surface M be given by 

<7(q) = 0 (1.4) 

where q, a subset of Rm, is a generalized configuration vector and g:B,m —► R' is a 

function with zero as its regular value. Equation 1.4 describes a (m - J)-dimensional 
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constraint space. The velocity and acceleration constraints are given by time deriva- 

tives of equation 1.4 and look as follows when arranged appropriately: 

J(q)q = 0 .(1.5) 

J(q)q + Mq>q) = o (1.6) 

For a constraint of type-A, given earlier, the velocity and acceleration constraints are 

[sin(0)    -cos(0)    {xcos(9) + ysm{9))][x    y   6]T = 0, 

and 

[     sin(0)    -cos(0)    (xcos(9) + ysm(9))}[x    y    §]T 

+   (92(-x sin(0) + y cos{9)) + 29 {x cos{9) + y sin(ö))) = 0. 

In the absence of friction at the contact, the equations of motion of the body 

moving with constraint 1.4 is given by 

A(q)q + /i(q»q) + ?(q) =f + -7T(q)*> (1J) 

where A(q) is an m x m symmetric inertia matrix, /z(q, q) is the vector of centrifugal 

and Coriolis forces, p(q) is gravitational force term, f is a vector of externally applied 

generalized forces, Jr(q) is the transpose of the Jacobian matrix defined in equa- 

tion 1.5 and A G R' is a vector of Lagrangian multipliers. The m scalar equations 

in 1.7 and / equations in 1.6 form a square linear system with m + l unknowns (q, A). 

This system can be solved for the unknowns in terms of quantities s = (q,q), called 

the state. This defines a vector field 

s = X(s) 

on a manifold TM defined by equations 1.4 and 1.5, i.e., TM={s = (q,q)|$(q) = 

0, J(q)q = 0}. The Lagrangian multipliers are to be interpreted as normal forces. If 

the configuration constraint is a passive constraint such as a free-flying peg under a 

type A constraint, then for a motion to preserve this constraint, the normal forces 

must point outwards from the surface.   This condition translated in terms of the 
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Lagrangian multipliers defines a subset of the manifold TM where any actual motion 

occurs. 

Let us consider a specific example of the equations of motion when the free-flying 

peg in the plane as considered earlier is moving on a frictionless constrained surface 

of type A with force and moment control of the type described by Khatib [Khat 87], 

Khatib and Burdick [KhBur 86], and Shekhar and Khatib [SK 87]. Let q^, q<f, q^, 

and id denote the vector of desired configuration, velocity, acceleration, and forces. 

Let the external force vector f applied at the center of mass of the moving peg be 

an orthogonal combination of components determined from a position control law 

and force control law. Let 0 and £l — I — 0 denote the selection matrices for 

position control and force control directions respectively. A particular example of Q 

for the planar peg-in-hole example is a diagonal matrix diag{sx, sy, s#}, where sx, sy, 

or Se = 1 indicates that coordinate axis x,y, or 0 is position controlled. The external 

force vector f for this example is 

f    =    A(q)n(q, + Kp(q, - q) + K„(q, - q)) + Ö(-K„;q + f, + K;(f, - JT(q)A)) 

='   r-ClKfJ
T(q)X (1.8) 

where f* is defined by equating the right-hand side of the first line with the second, 

and Kp, K„, K„/, and K/ are position, velocity, force control velocity damping, and 

force gain matrices - of three-by-three in the planar peg-in-hole example. The term 

JT(q)A represents the measured force of reaction coming from the derivative force 

feedback term. Combining equation 1.7 with f from equation 1.8 and equation 1.6 

one obtains the desired linear system 

A(q)    (ClKf-I)JT(q) 

J(q) 0 

f*-Mq,q)-p(q) 
-Ä(q,q) 

(1.9) 

For the specific planar example of type A constraint we have been considering, the 

mass matrix A(q) is a diagonal matrix diag{m, m, 1} where / is the rotational in- 

ertia about the center of mass, /i(q, q) = 0, p(q) is defined according to if gravity 

has a component in the plane of motion, and h(q, q) = 92(—xsin(6) + ycos(6)) + 

20(£cos(0) + ysin(0)). 
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For a given control law of equation 1.8, the solution of linear system 1.9 contains m 

second-order differential equations governing the motion of a body in type A contact. 

The solution of such differential equations describes evolutions of the system for all 

initial states s(0) in the domain. Let us denote ^ as a solution. If the state of the 

system at time t = 0 is s, i.e., </>(0,s) = s, then the state of this system at time t is 

<j>(t,s). 

Consider now the parameters in equations 1.9 and 1.8 that determine the differ- 

ential equations. They consist of quantities some of which are deterministic like A(q) 

but not known precisely a-priori, and some are non-deterministic like the values of 

the state q, q, and the measured reaction force JT(q)A used in the feedback control 

law. 

1.3    Review of Previous Work 

A substantive description of this formalism is given by Latombe [Lat 91]. At the 

expense of repetition, a brief overview of robotics related results are presented here. 

A review of work related to control uncertainty is presented separately in Chapter 3. 

Lozano-Perez, Mason, Taylor [LMT 84] first presented a formal framework of syn- 

thesizing Fine Motion Plans in the context of compliant motion strategies for assembly 

of parts. This paper considers uncertainties broadly divided into Control Uncertainty, 

Sensing Uncertainty, and Model/Shape Uncertainty. It prescribed bounds on each of 

the uncertainties and proposed notions of strongly guaranteed and weakly guaran- 

teed plans in a recursive structure of motion commands and associated termination 

and selection predicates. This formalism with provable properties to deal with un- 

certainty was in sharp contrast with the prevalent Skeleton Refinement method of 

Taylor [Tay 76] and Lozano-Perez [Loz 76] and concurrently appearing paradigm of 

Inductive Learning by Dufay and Latombe [DufLat 84]. 

Mason [Mas 84] considered Bounded-Complete Strongly Guaranteed Plans with 

continuous sensing history, though his completeness result should be seen in light of 

our observation that the interpretation of sensing measurements is also affected by the 

termination condition. Erdmann [Erd 84] separated goal attainment recognition and 
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goal reachability. A subset of the goal called Kernel [Erd 84, Lat 88] is constructed 

where it is possible to recognize the achievement of goal. Then, a backprojection of the 

kernel is constructed which are those points for which all trajectories for the given 

control model reach the kernel. An algorithm in mini-world called Backprojection 

from Kernel was given by Latombe [Lat 88]. Donald [Don 87] considered weakly 

guaranteed plans with additional structure for Error Detection and Recovery. Lastly, 

a forthcoming paper by Brost and Christiansen [BrCh] considers Probabilistic Plans 

with a probabilistic likelihood of success. 

In fine motion planning, among descriptions of the moving object and the obsta- 

cles polyhedral, polygonal, and objects bounded by patches of algebraic surfaces are 

common. A typical configuration space is the Euclidean Plane for one rigid body 

translating in a plane - this is the space considered in all planners except those of 

Buckley [Buck 86], Canny [Canny 89], and Brost [Brost 92]. Other typical configu- 

ration spaces are SE(3) - the group of rigid body transformations in physical three 

space, and Tn - the n torus describing configurations of an n-revolute jointed manip- 

ulator. 

Among control schemes that model the motion, there are first-order approxima- 

tions and exact second-order differential equations. A constant first-order model 

known as velocity control in the free space and damper control in both the free 

and contact space was used in the original Lozano-Perez, Mason, Taylor paper and 

has been used subsequently in the planners of Donald [Don 87], Briggs [Brig 89], 

Latombe [Lat 88], Latombe, Lazanas, and Shekhar [LLS 91], Brost [Brost 92], and 

Lazanas and Latombe [LazLat 92]. A linear first-order model which is an approxima- 

tion of the commonly used spring dynamics was used by Buckley [Buck 86]. There 

exists no fine motion planner that uses a second-order model, except perhaps an a- 

priori model of the envelope of trajectories used by Canny [Canny 89]. Force control 

literature [Whit 86], however, contains several such potential models. Among them is 

the model, used by Khatib [Khat 87], of a unit mass moving in the operational space 

with position derivative and proportional-derivative force feedback. 

Along the dimension of sensing, examples are position sensing, force sensing, and 

time sensing. These are direct sensing. Indirect sensing include camera based vision 
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sensing, sparse beam type sensing, and models thereof, particularly the perceptual 

equivalence class of Donald and Jennings [DonJen 91]. Some examples of a termina- 

tion predicate are the Sticking Termination used by Donald [Don 87], the position, 

force and time based predicates used by Canny [Canny 89], and the position and 

force sensing based termination predicates used by Latombe [Lat 88], and Latombe, 

Lazanas, and Shekhar [LLS 91]. 

Natarajan [Nat 88] first showed that Strongly Guaranteed Fine Motion Planning 

is P-Space hard. Several other general results on the complexity are by Canny and 

Reif, and Canny. Checking if a point lies in the time dependent forward projection 

is NP-hard [CanRei 87]. A three-dimensional compliant motion planning problem 

is non-deterministic exponential time hard [CanRei 87]. An algorithm to find an 

n-step plan is given by Canny [Canny 89] that is double exponential in the size of 

the environment, the number of steps, n, in the plan, and the dimension of the 

space. A less general algorithm given by Donald [Don 87] is single exponential in 

the number of steps. Several variants of One-Step Strongly Guaranteed Fine Motion 

Planner in planar configuration space with a damper model of control uncertainty 

have low complexity. They are the nlog(n) algorithm of Friedman, Hershberger, and 

Snoeyink [FHS 89], the n2log(n) of Briggs [Brig 89], and the nlog(n) of Latombe, 

Lazanas, and Shekhar [LLS 91]. A recently proposed multi-step strongly guaranteed 

fine motion planner by Lazanas and Latombe [LazLat 92] in planar configuration 

space with velocity control was given with a polynomial complexity under the as- 

sumption that sensing and control are perfect inside landmark regions, while sensing 

is inexistent and control is imperfect outside such regions. 

1.4    Overview of the Rest of the Thesis 

Chapter 2 expands further on the results in Section 1.1.2 on One-Step Fine Motion 

Planning with uncertainty in control and sensing. We also construct some simple 

examples of One-Step Preimages. 

Chapter 3 considers the problem of characterizing control uncertainty.  We give 

a brief overview of previous results from Differential Inclusion, Hamiltonian systems, 
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and Hamilton-Jacobi Theorem. The remaining parts of this chapter give motivation, 

constructions and the proof of all the new results on characterizing the control uncer- 

tainty. We end this chapter by constructing two simple examples. The first example is 

in a simple two-dimensional domain and illustrates Theorem 1.2. The second example 

is in a three-dimensional domain. It considers some degenerate cases of Theorem 1.2. 

However, a natural generalization of this example gives a well defined boundary of 

the forward projection of the stable and unstable manifolds in all dimensions. 



Chapter 2 

Fine Motion Planning Problem 

In this chapter1, we present a proposal of the fine motion planning problem. The 

inputs to a Fine Motion Planner consist of Geometric Models, Models of Uncertain- 

ties, and an Initial, and a Goal Subset. The model of uncertainties comprises control 

uncertainty, sensing uncertainty, and uncertainty in the geometric model. We do not 

consider here the uncertainty in the geometric model. We give a preliminary construc- 

tion of the configuration space and the configuration space obstacles for a rigid body 

motion in the presence of other stationary rigid body obstacles. Equations of rigid 

body motion transform smoothly with any choice of coordinate system on the physi- 

cal space. We give such transformations for second-order equations in Section 2.1.2. 

We pose the problem of control uncertainty on smooth sets in Section 2.2 cast as 

a problem in differential inclusion and define the set of solutions that describe con- 

trol uncertainty. Section 2.3 presents a model of sensing uncertainty as a set valued 

map - particularly position, velocity, and force sensing. We, then, define a One-Step 

Preimage - a building block of any complete planner in this framework. We end this 

chapter by constructing some simple preimages that serve as examples, including one 

where embedding the knowledge of the termination condition in the construction of 

preimage augments its size. 

1A Part of this chapter has benefited from suggestions by Randy Wilson. 

20 
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2.1    Configuration Space 

The problem of rigid objects moving amongst other objects can be reduced to the 

problem of a point moving in the configuration space. In this framework, corre- 

sponding to a motion in free space, there is a motion of the point in the free space 

of configuration space, and corresponding to the motion of the moving object when 

it touches one or several of the objects in the workspace, there is a motion of the 

point on the boundaries of the Configuration Space Obstacles. Let S be either the 

two-dimensional or three-dimensional physical space. Consider S as the standard Eu- 

clidean space E" where n(= 2 or 3) is the dimension of the physical space S. Consider 

rigid bodies .4^, i = 1,... ,r, as compact, closed and regular [HopWil 86] subsets of 

the space S at the initial configuration. The {Ai, i = 1,.. •, r}'s are moving objects. 

Displacements of each rigid body Ai extends uniquely to isometries of S. The set 

of isometries form a Special Orthogonal Lie group denoted by SE(n). The elements 

q € SE(n) are maps 

q:S^S (2.1) 

that assign to each point p G S a unique point p' = q(p) G S. If there is one free- 

flying rigid object in a planar workspace capable of translating and rotating, then an 

element of SE(2) specifies a rigid body displacement. Note that SE(2) is the same as 

the interior of a solid torus R2 x S1. Now consider several rigid bodies. If there are r 

independent moving bodies, r copies of SE(n) specify possible displacements of the 

rigid bodies. Effectively, an element in Y[r SE(n) uniquely determines the position 

and orientation of all moving bodies. Any kinematic relationship among the moving 

bodies specifies a subset of the product space TJr SE(n). For example, if there is a 

manipulator with six revolute joints in three space, elements on the surface of a six 

torus T6 C Fta SE(3) determine the position and orientation of all the links. If there 

is a mobile robot translating and rotating on the floor sharing the workspace with a 

manipulator with six revolute joints, then elements on the surface of a six torus and 

interior of a solid torus (= T7 x R2) specify all possible configurations. 

Define the Configuration Space, Q, of several rigid objects or several intercon- 

nected groups of rigid objects to be the set of all isometries that uniquely determine 
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the position and orientation of the objects in the physical space S. For any q € Q, 

denote by A(q) the displaced rigid body At at the configuration q € Q. We also 

use >t(q) to denote all moving bodies i = 1,..., r, at the configuration q. Let 6 € Q 

denote the identity map. Then, Ai{e) represents the moving object at the initial 

configuration - the subset Ai of S. 

In addition to the moving bodies in the physical space 5, consider other stationary 

rigid bodies called obstacles At, i = r+1,..., r+s, that are disjoint, closed, and regular 

but not necessarily compact subsets of S. Since these objects are stationary, for 

notational simplicity, we define A(q) = At,i = r+ l,r + s. Define the Configuration 

Space Obstacles as the set of points, q, in the configuration space Q where the bodies 

A(q) overlap each other, i.e., Qobst = Ui=i,r{? € Q|A(q) n ^-(q) ^ 0, j = 1,..., r + 

s, j ^ i}. The complement of the Configuration space obstacles in the configuration 

space is the free space, i.e., Q/ree = Q\ Qobst- Define Contact C-space as Qcontact = 
{qeQ\Ai(q)nAJ(q}^Hi,int(Ai(q))nint(Aj) = ^,i,j = l,..-,r + s,i^j}. 

Definition 2.1 Define Valid C-space as 

Qvalid — Qfree U Qcontact- 

Note that since the moving objects A,i = 1,... ,r are compact, closed, and regular, 

and the stationary objects Ai, i = r + 1,..., r + « are closed, and regular, the space 

Qva/ld is closed (see Latombe [Lat 91]) , but it may not be regular (see example in 

Hopcroft and Wilfong [HopWil 86]). In addition to the assumptions that make the 

valid configuration space a closed subset of configuration space, we assume that it 

is also bounded. Effectively, we only consider compact valid configuration spaces. 

For example, the configuration space of a planar rigid body translating in the plane 

without any obstacles is not compact. By assumption, we limit our interest to a 

compact subset of the configuration space. Several configuration spaces like that of 

the n-revolute jointed manipulator satisfy this condition naturally. 

Consider the case when the configuration space Q is a subset of a smooth man- 

ifold and the valid C-space, Qvalid, is a piecewise smooth subset of the configura- 

tion space. In most applications of robotics, the configuration space is an algebraic 

manifold (defined by finitely many polynomial equations) and the valid C-space is 
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a semi-algebraic subset of the algebraic manifold - see for example Schwartz and 

Sharir [SS 83b], Canny [Canny 88] and Ge and McCarthy [GeMc 90]. A stratification 

Q . of the valid C-space is a partition of Qvaiid into a disjoint union of a locally 

finite number of subsets 5,-, each of constant dimension called a stratum such that 

the frontier of each stratum is the union of lower dimensional strata. Consider each 

stratum 5, as a subset of a smooth manifold M,. For this purpose, it is sufficient to 

consider the existence proof by Hironaka [Shaf 74] of a projective non-singular model 

of every irreducible, projective and smooth variety of an arbitrary dimension over 

characteristic zero fields. 

2.1.1    Tangent Cone and Bundle of Valid C-Space 

Consider the triple n = {TQ,Q,n) called the tangent bundle of the configuration 

space Q where the map n: TQ —> Q is the natural projection defined as 7r(q, vq) = q. 

There exists an atlas {(£/;,&)} of Q and a collection of mappings {V>,} satisfying: 

• V^: 7r_1£/,- —► <f>iUi x Rn is a local trivialization of the tangent bundle, 

• {(7r-1£/i, V>t)} is an atlas of TQ, and 

• for all i,j, (ipj o ipi 
1,<f>Jo <f>{ 

l) is a CT local tangent bundle map. 

The charts (ir~lUi,ipi) are local tangent bundle charts. Denote the local tangent 

bundle charts by the triple (Ui,<f>i,tpi). The space TQ is called the total space, Q the 

base space, and 7T-1(q) for q € Q, the fibre over q. Often we will denote elements 

(<l)vq) £ TQ as s - the state, so that 7r(s) = q as usual. Denote 7T2(s) = vq, the 

projection onto the second factor, though this projection will be used less often. 

Define the restriction tangent bundle IT = {TQ\Qvalid, Qvaiid, *") of the valid config- 

uration space as the bundle [)qeQvatidTqQ. This is just the restriction of the tangent 

bundle of the configuration space to the valid configuration space. To construct the 

tangent bundle of the valid configuration space, first construct the tangent bundle to 

a stratum «S, denoted 7Tj = (T«S,,tS,,7T;). Construct the tangent bundle of the valid 

configuration space, IT = (TQvaiid, Qvaiid, TT), to be the bundle IJ, TSi. Note the differ- 

ence between the restriction tangent space TQ\Si and the tangent space of the strata 
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considered as a manifold 7\S,-. For a point in the strata, say Sj, corresponding to the 

free space, the dimension of TSj is same as the TQ\S} and for a point in a strata, say 

Sk, of dimension n - p, where n is the dimension of Q and p is the codimension of 

the strata Sk, the dimension of TSk is 2(n - p) whereas the dimension of TQ\Sk is 

2n — p. 

Parallel to the construction of tangent cones to analytic varieties [Wh 65b], we give 

a definition of the tangent cones to real semi-algebraic set. In particular, we want to 

capture the notion of the set of all tangents to a point in the valid configuration space. 

Let the tangent cone to a point q € Qvaud be denoted CqQvaiid. The tangent cone 

consists of those vq € TqQ\Qvalld such that there exists a sequence of points {qt} -► 

q € Qvaiid, a sequence of positive real numbers {a.i},ai > 0, and a,(q; - q) -+ vq. 

The tangent cone consists of limits of secants from q to points in Qvaiid- For analytic 

varieties, Whitney [Wh 65b] shows that the vanishing of the first homogeneous part 

of the defining polynomial of the variety defines the tangent cone. We are not aware 

of a similar constructive definition of the tangent cones to real semi-algebraic sets. 

Tangent cones in general are not vector spaces even for algebraic sets. So, when we 

piece the tangent cone at every point in the semi-algebraic valid configuration space, 

instead of a vector bundle, we get a fiber bundle.   Denote the Tangent Cone fiber 

bundle as OQvaiid- 
The tangent space of a point in the valid configuration space is a subset of the 

tangent cone at the point of the valid configuration space, which itself is a subset of 

the restriction tangent space of the valid configuration space: 

TqQvatid C CqQvalid C Tq<2. (2.2) 

The containment of the tangent cone in the restriction tangent space is by construc- 

tion. To see that the tangent cone may be a proper subset, consider the semi-algebraic 

set in the plane defined by x > 0 and consider any point (0, y) in this set. The tangent 

cone at this point is the set v(0ltf) = K > °}> whereas the restriction tangent space at 

this point is the plane R2 itself. Now consider the containment of the tangent bundle 

of the valid configuration space in the tangent cone fiber bundle. Consider the tan- 

gent space TqSj of a point q 6 Sj. If in the definition of tangent cone, the sequence 
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{qj is restricted to the strata Sj, the tangent cone CqQvaiid becomes identical to the 

tangent space TqSj. 

2.1.2    Representation of Configuration Space 

Assuming that the initial configuration of the moving object in the physical space de- 

noted e € SE(n) is given, the configuration space obstacles are described independent 

of any representation of SE(n). However, various choices of coordinate system on the 

physical space yield naturally a representation of the configuration space and the 

configuration space obstacles. These transformations for the representation of SE(n) 

and its first tangent bundle are given by Loncaric [Lone 87]. In addition to them, we 

establish transformations for the elements in the second tangent bundle - necessary for 

the equations of motion that are second-order. Classically, such transformations arise 

from the action of a Lie group on a space - in our case the action of Special Orthogonal 

Lie Group on the physical space which is a two or three-dimensional Euclidean space. 

As a consequence of the transformations, we also prove that the configuration space 

(and their subsets) transform diffeomorphically (smoothly) due to a change in the 

choice of coordinate. Since smooth transformations preserve the differential structure 

such as the phase-space flow, and the type of singularities of vector fields, it is suf- 

ficient to consider vector fields on the configuration space and the obstacles with an 

arbitrary choice of coordinate system on the physical space. 

In addition to this structure, any other initial arrangement of the moving objects 

in the physical space yields an intrinsically different representation of configuration 

space obstacles.   The representation of configuration space obstacles for any new 
p 

initial arrangement is related to a previous one by right translation map b vA ba for 

a,b € SE(n), where a is the map that sends one initial configuration of the moving 

objects to the other. These transformations are also smooth maps and are treated 

extensively in books such as Abraham and Marsden [AbMa 78]. 
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Special Orthogonal Lie Group 

By a choice of the coordinate system on the physical space S we mean a norm- 

preserving orthogonal map 

x:^Rn:PÄ (^(p), z2(p),..., s"(p)) (2-3) 

where R" is n-tuple of the set of reals, each x{ is a scalar map from the physical space 

S to the set of reals R. 

The configuration space of one free-flying rigid body in space S is SE(n). For 

a choice of coordinate system x on S, an element q of SE(n) has several prevalent 

representations including homogeneous transformation matrix, Pliiker screw coordi- 

nates, and dual quaternions [BotRot 79]. Denote the representation of an element 

q e SE(n) by qx with the choice of coordinate system x on S. As an example, the 

representation of an element q € SE(n) in the homogeneous transformation matrix 

TR   t 
qx = (2.4) 

0    1. 
where R is an n x n rotation matrix and t is a translation n vector, so that q(p) = 

x-1(Rx(p) +1). For an arbitrary representation, the identity q(p) = x_1 o qx o x(p) 

represents map q in terms of its representation qx and the coordinate system map x. 

Note the converse identity qx(p) = x o q o x_1(p). 

Another choice of coordinate system, say y, changes the representation of elements 

q of SE(n). If the two choices of coordinate system x and y are related by a map 

h € SE(n), such that y = xoh-1, then two representations of any element q G SE(n) 

are related by: 

qy   =   yoqoy"1 

,-i =   xoh-1 ox 1oqxoxohox" 

=   (h-1)xoqxohI. (2-5) 

Tangent Space of Special Orthogonal Lie Group 

The tangent space TeSE(n) to the special orthogonal Lie group at the identity e € 

SE(n) (the initial configuration), denoted se(n), is the space of infinitesimal rigid 
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body motions. A choice of coordinate system x on S also determines a basis of the 

vector space se(n). For example, denote the representation of an element ve G se(3) 

by 

«£   vl   <   <f (2-6) v* = u/ ei w: e2 es ei 

where uf = [w* w* w* ]T is the angular velocity and [v* u* v* ]T is the 

translational velocity of the origin of coordinate system x, both expressed in x. An- 

other choice of coordinate system, say y, on the space S induces a map of an element 

ve € se(n) from one represenation to the other. First, consider for a given h € SE(n), 

the conjugation map 

qn+hqh-1. (2.7) 

Define the adjoint Ad^ to be the derivative of the conjugation map at q = e. The 

adjoint is a map Adh: se(n) —> se(n).  For example, if h is represented as a homo- 
1-»X 

geneous transformation matrix in the coordinate system x with Rn as the rotation 

matrix and tfaX as the translation vector, then the adjoint Ad^ is represented as 

[    RhX 0   " 
Adg=[[thX]RhX    Rh\ 

where [thX] represents the cross-product operator of the vector th   defined as 

(2.8) 

0    -h    t2 ■ 

[t]=     t3       0      -h    . (2.9) 

.-t2     h       0 . 

Now, consider the representations of ve in coordinate system x and y. The derivative 

of equation 2.5 at the identity is the required map between the two represenations. 

Thus, 

v? = ^-.(vx). (2.10) 

The equation 2.10 gives the mapping of elements of the tangent space of the configu- 

ration space se(n) at the identity e - a relation that transforms velocity given in the 

x frame to the velocity in the y frame when the object is at the initial configuration. 

The mapping of velocity in frame x to that in y when the object is at an arbitrary 

configuration q is related by another mapping. In effect, we would like to construct 
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a representation of TSE(n). Since SE(n) is a Lie group, its tangent bundle is paral- 

lelizable (trivial), the tangent bundle TSE{n) can be identified with SE{n) x se(n). 

We derive the transformation from one coordinate system x to another y in terms of 

the adjoint in equation 2.8 and the map corresponding to the configuration q. 

Consider coordinate systems z and z' related to frames x and y by 

z   =   xoq-1, 

and       z'   =   yoq"1. 

They represent the rigid body displacements of the frame x and frame y by the map 

q G SE(n). In other words, frames z and z' are the displaced configurations. The 

relations vf = Diag(Rq-lX,2 x n)v£, and v* = Diag(Rq_lX,2 x n)vx follows where 

Diag(R,i x n) is i blocks ofnxnR matrix on the diagonal. Also, 

z'   =   zoqoh_1oq_1 

=   q'o^'olq-^oz. 

It is easy to verify that qz = qx, (h~l)z = (q"1)x o (h"1)x oqx and (q"1)2 = (q"1)x, 

so that z' = (h"1)xoz implying vf = Ad£_, (v*). These relate the velocities of frames 

z and z'. Therefore, the velocities v^ and vx are related by 

Vy = Diag(RqX,2 x n) A^ Diag(Rq_lX,2 x n) vx. (2.11) 

Second Tangent Bundle of SE(n) 

The space Tse(n), the double tangent space at the identity of SE(n), also acquires 

a basis with the choice of the coordinate system x. Denote a representation of an 

element ßVc G Tse(n) in this choice as 

ßl = wx 
(2.12) 

where ax
e is the acceleration vector, and wx

e is the velocity vector corresponding 

to the derivative of the base space vector e G SE(n). For n = 3, /?£ has twelve 

components.  Another choice of coordinate system y on the space S induces a map 
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of an element ßVc 6 Tse(n) from one representation to another.   We establish the 

following transformation 

ßl 
Adg-, 

0 
3X (2.13) 

where 

A£-,= 
0 

(2.14) 
0" 

.-[[*]Rh~1V]Rh"lX 0. 

When the rotation part of the map h is an identity, this transformation is equivalent 

to the classical kinematics expression ap = a0 + a x rop + u x (u x rop) for the 

acceleration of another point p of a rigid body when the accleration of point o is 

given. This relation between accelerations in two choices of coordinate systems holds 

for any velocity ve at the identity configuration. At an arbitrary state (q, vq), the 

relation 

Af'     il" lDiag(R'"'X,4xn)Äq (2.15) 

parallel to the one given in equation 2.11 that relates velocities, gives the transfor- 

mation of the elements /3Vq € TVq(TSE(n)). 

ßl   =Diag(Ri ,4xn) 'Vq 

Diffeomorphism of Configuration Space 

Proposition 2.1 Any choice of coordinate system induces diffeomorphic representa- 

tion of the Special Orthogonal Lie group SE(n). 

Proof: The equations 2.5 and 2.11 give explicit maps relating any two repre- 

sentations of SE(n) and their derivatives. They are non-singular. Any two choices 

are thus, homeomorphisms of SE(n). Infact these are analytic maps. So, different 

choices of coordinate systems induce smooth diffeomorphic representations of the Lie 

Group SE(n).o 

Any vector field on SE(n) and tangent bundle of SE(n) have a diffeomorphic rep- 

resentation for any choice of the coordinate system and any two such representations 

are related according to equations 2.11 and 2.15. 
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Now, consider smooth manifolds M that are subsets of SE{n). Any vector field 

on TM transforms diffeomorphically from one coordinate system to another. Con- 

sider the case of several rigid bodies. The product space \\r SE(n) has a smooth 

diffeomorphic representation for each choice of coordinate systems. Any subset of the 

product configuration space also transforms nicely; for instance consider various rep- 

resentations of the six-torus as a subset of üe SE{3) for various choices of a coordinate 

system. 

2.1.3    Forces in Configuration Space 

Forces are elements of the cotangent bundle T*Q of the configuration space. A 

force element fq at q is a linear function on the tangent space, i.e., fq:TqQ -» R. 

Intuitively, a force fq at q maps an infinitesimal displacement vq G TqQ to the reals, 

the work done, also called Virtual Work. Now, consider an example of a force field 

on the configuration space specified by a potential function V: Q -* R. Define the 

covariant section dV: Q -* T*Q of the cotangent bundle such that dV(q)(X(q)) = 

X(q)(V(q)) for X: Q -► TQ, a vector field on the configuration space. The covariant 

section dV defines a force field on the configuration space. When configuration space 

is the space of rigid body motions in three-dimensional space, the forces consist of 

the usual three moments and three forces. Another example is the set of six joint 

torques of a manipulator with six revolute joints. In classical mechanics, such forces 

are called generalized forces. We use the term generalized forces to denote the forces 

in the configuration space. 

Contrary to a natural basis that exists for elements in the tangent bundle, there 

is no natural choice of basis for the cotangent bundle. Given a Riemannian metric 

on the manifold, however, there exists a unique representation of the elements in 

the cotangent bundle. Consider a tensor g G T2°(Q), representing a metric on the 

configuration space. Then, there exists an isomorphism g* G L{T*M,TM) of the 

cotangent and tangent bundle defined as f (v) = g(g*(f),v) for f G T*M and v G TM. 

Now, consider forces on subsets of the configuration space. In particular, consider 

manifolds McQ, either a closed subset of codimension p or an open subset. Forces 

on M are elements of the cotangent bundle of the configuration space restricted to 
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the manifold M. So, a force fq at a point q in M in T^Q is a linear function on the 

tangent space of configuration space restricted to the manifold M i.e. fq.TqQ —► R. 

In this way, specification of a force field on M takes the form f: M —► T*Q\M- Notice 

that the space of forces on the manifold M is the dual tangent bundle of the ambient 

configuration space. Inclusion of M in any other ambient space changes the space of 

forces on M. In this respect we consider forces on any subset with an implied ambient 

space - the configuration space. 

Change of Coordinate System for Forces 

Consider configuration space SE(3). A representation ff of a force fe at the identity 

e € SE(3) in the dual coordinate system on the cotangent space for a choice of 

coordinate system x is 

feX = kf      T*      T?      f*      /*      /3
X]T. (2.16) 

Another choice of a coordinate system y where y = x o h_1 induces a corresponding 

represenation of the forces 

f?=Ad£(£) (2-17) 

where Ad^ is the coadjoint of the inverse conjugation map 2.7. Following a construc- 

tion parallel to the one given in equation 2.11, a relation between the representation 

of forces at an arbitrary configuration q is 

fy = Diag(RqX,2 x n) Ad£ Diag(Rq~lX,2 x n) f*. (2.18) 

Forces of Reaction without Friction 

When a vertex of a body presses against an edge of another body, the force of reaction 

is always directed positively outwards on a normal to the edge of contact. The normal 

direction is a subspace and a subset of this subspace which is positively outwards is 

where the forces of reaction lie. For any small displacement of the vertex in contact 

with the edge, the force of reaction does zero work. Using this notion, we define 

a Generalized Normal Force Subspace of the forces in the configuration space.  The 
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Generalized Forces of Reaction in the configuration space is a subset of the Generalized 

Normal Force Subspace. 

We first give a constructive definition of the generalized normal force subspace. 

Consider a subset M of the configuration space with the inclusion map i: M —»• Q and 

the corresponding Di: TM —> TQ. The space of all displacements in M at a point 

q is the subspace TqM of the ambient space TqQ. Define the generalized normal 

force subspace Tn at q to be all elements of the cotangent space Tq Q that map all 

displacements in the tangent space TqM to zero, i.e., 

JJ = {fq G rQ|Vvq € TqM,fq(Di(vq)) = 0}. (2.19) 

There is a natural isomorphism between a vector space and the second dual of this 

space. With this in mind, it is not hard to observe that the generalized normal force 

subspace is infact an intersection of the kernel of all elements in the second dual of 

the tangent space T^*M. Let t**:T**M -+ T**Q be the second dual inclusion map 

induced by the inclusion of the subset M. If we denote elements of the second dual 

of the tangent space as v**, then 

*; = { n  *«-£W}. (2-2°) 
vq

m€T"M 

First, let us make some observations about this subspace. If M is free space, a subset 

of codimension zero of the configuration space, the inclusion of the tangent space 

M is an isomorphism. The kernel is the trivial element zero of the cotangent space. 

In free space, the reaction forces are zero. When M is a subset of codimension r, 

the dimension of this subspace is r. Construct the normal generalized force bundle 

7T = {FQvaiid, Qvaiid, w) by piecing all the local subspaces l)q€Qvalld^- The set of 

generalized forces of reaction is a subset of the normal generalized force bundle. 

When inertial forces are considered, the forces of reaction at a configuration also 

depend on the velocity. On this account, we construct the forces of reaction as a 

mapping from the tangent bundle of the configuration space to the cotangent bundle of 

the configuration space - in fact to the bundle of normal generalized forces. Denote the 

subset of generalized forces of reaction at a point (q, vq) € TqQ as T   (q, vq) C Tq. 
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In general, the subset of forces of reaction is a multivalued map 

^
R

-TQ\QWM - rOvaii* C T"<2|CvaIid. (2.21) 

If friction is considered, the generalized forces of reaction are not a subset of the 

normal generalized force subspace. 

Following on a recent observation about the orthogonal nature of the force freedom 

space [Mas 81, LipDuf 88], we comment that although generalized normal force is a 

subspace of the dual space, relative to any metric used to identify the tangent and 

the cotangent bundle, the generalized normal forces are the orthogonal complement 

of the tangent space of M in Q in that metric. This follows from the definition 

f(v) = gig^if),^) given earlier for f € T*M, and v € TM. The generalized normal 

force subspace is defined in equation 2.19 by the zero set of f(v). It implies that the 

inner product of g*(f) and v vanishes with g as metric and so they are orthogonal 

relative to g. To see this in coordinates, first consider the matrix gij = <7(gfr,^y) 

of the Riemannian metric g in local coordinates {U, xk} on Q. For simplicity, use 

dual coordinates dx\ on the cotangent space, so dxl
k(q) (^frlq) = ^j' *ne Kronecker 

delta, and g%\ the inverse of g^, is the matrix of linear map g* € L(T*M,TM). An 

element fq = £,• flqdx\, therefore, has a representation «/"(fq) = EiP^fq^gfr € TqM, 

where <7ö(fq)' = J2j9^fq- Now, consider the inner product of an element vq € TqM 

and the image <7B(fq) of a force element fq € T^M. In local coordinates on the 

tangent space and the dual coordinates on the cotangent space, it is £:J gijdx\ <g> 

dxj
k(T,i «isfr, Ey P'J7q^r) = Eyfc *W7£ = £; </q- 
Now, consider the generalized normal force subspace defined by the vanishing of 

the functional fq(vq). In dual coordinates, it reduces to £,-i>q/q whose vanishing 

implies that the inner product vanishes, and hence orthogonality. 

2.2     Control Equations as Vector Fields 

We consider control equations, uncertainty on control equations, attainable set, and 

forward projection on smooth sets. For simplicity, let the manifold M, that contains 

a strata «S,- as a closed and regular subset be simply denoted M. 
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2.2.1     Control Equations and Flows 

An evolution of a physical system with feedback control in a continuous domain 

defines the passage of the state of the system as a continuous function of time. For 

a point s in the state space, it tells the time rate of change of the state s at any 

instant. Usually, the state of the system is the space of positions and velocities. In 

this space, a control system specifies the time derivative of the position and velocity 

(velocity and acceleration respectively) at all the points in the domain. A solution of 

the control is solution of an initial value problem of a system of ordinary differential 

equations. A solution represents the passage of the state as a continuous function of 

time. In this case, given an initial state s(0), the solution tells us the state s(t) or 

<t>(t, s(0)) at a time t. Trajectories are evolutions of a state s as a function of time. 

The trajectories on the boundaries of the configuration space obstacles correspond 

to one of the several (force) control schemes that allow a continuous motion to be 

executed in constrained space. All such force control schemes, and as a matter of 

fact, even plain motion control schemes, are specified as simple second-order differ- 

ential equations. In this view of motion on configuration space obstacles, the role of 

force control is to factor out any normal component of the motion in the constrained 

space. The corresponding actual motion that occurs on the obstacles is the remain- 

ing tangential component. To compute the trajectories, one deduces the tangential 

components from the motion specification. The tangential component of the motion 

specifies a differential equation on the constrained surface. 

First consider the bundles n = (TM, M, IT) and r = (T{TM),TM, r), the tangent 

bundles of M and TM. Note that Dir = (T{TM),TM,DTT) is also a bundle where 

Dn denotes the derivative of the map ir. A map X: TM -► T(TM) is called a section 

of the the bundle r if r o X is the identity map. 

A control equation on a stratum M is a second-order equation that assigns an 

acceleration to every point of the tangent space (q, vq) € TM. Formally, consider an 

autonomous control equation as a vector field on TM given by a Cs map X 

X: TM -» T(TM) (2.22) 

such that it is a section of the bundles r and Dn.   If {U,<j>,i})) is a local tangent 
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bundle chart of n with ip: TT~
1
U —► <f>U x Rn, and (7r-1[7, ip, t]) a local tangent bundle 

chart of r with 77: r_1(7r_1?7) —► (<££/ x R") xR"x Rn, then the section X induces a 

local section X': <j)U x R" -> {<f>U x R") x Rn x Rn. Let points and functions in the 

image of a chart map be denoted by corresponding prime letters. So, if X'(q', vq) = 

((q',Vq), w|q,)V, ),a'(q,v/ j), then X being a section of the bundles r and Dn implies 

Dn'oX' = T'OX' SO that L>7r'oX'(q', vq) = (q', w[q,iV,}). Therefore, X is a second- 

order equation only if vq = w'(q, v, y For brevity, we now use the notation s G TM 

for the state (q, vq) together with the natural projection map 7r(s) = q. 

A point s is called a singular point of the vector field if X(s) = 0. A map X 

is transversal, if the linear map DX is full rank at all points X(s) = 0. A singular 

point s is isolated if map X is transversal. If the real parts of all the eigenvalues of 

the linear map DX(s) are non-zero, the singular point s is called hyperbolic and is 

characterized as a source, a sink, or a saddle when the real parts of the eigenvalues 

are all positive, all negative, or some positive and some negative, respectively. By a 

solution to the vector field, we mean maps <j>: (-e,e) x TM -> TM whose tangent 

vectors coincide with X, that is, a map <f> with 

<£(0,s)   =   s, 

A* (f !<«.■>)    =   *(<KM))> (2-23) 

Dl(7r^(«|l(<'s))    =   ^'S)' 
A continuous function <j> is an indefinite integral if, and only if, it is absolutely con- 

tinuous. Therefore, we consider solutions <j> that belong to the space AC(R,TM) of 

absolutely continuous functions from an interval I to the tangent bundle TM. In 

general, the flow <f> is C° if X is Lipschitz and the flow is Ck if X is Ck [Lang 62]. 

If we assume that X is a C1 map on each stratum, then it satisfies the Lipschitz 

conditions locally, so basic theorems about the existence, uniqueness, and differentia- 

bility of the solutions apply. With existence and uniqueness of the flow <j), if there are 

two solutions <j> and fl defined for t G Ju = {u-e,u + e) and t £ Ju' = {v!-S,u' + 6) 

such that Juf] Ju> ± 0, then these solutions agree on Juf]Ju'. Piecing such solu- 

tions, one obtains a maximal open interval J CK about every s called the maximal 
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interval J(s). Call the domain of the flow </> of a vector field X an open subset 

Vx of R x TM such that Vx D {0} x TM, and the flow is maximal - for each 

s G TM, R x {s} n Vx is open interval. Now, for each s consider a map 4>s: J —► TM 

such that 4(t) = <f>t{s) = </>(*, s). The map 4 or the whole set <£s(J(s)) is called 

the orbit or the trajectory of the vector field passing through s. The complete map <£ 

is also called flow of the vector field. 

We consider vector fields that depend on a parameter and the corresponding de- 

pendence of the solutions on the parameter. Let E CRabe the domain of parameters 

p. Let X: M x E -» TM be a Cs map, s > 1. For each p € £, the map Xp: M -> TM 

defined by Xp(s) = X(s, p) is a vector field of class Cs on M. The solutions (j)(t, s, p) 

are also Cs maps. 

2.2.2    Bounded Perturbation of Vector Fields 

A function X represents a perfect control equation. However, a function other than 

X may also determine the flow. Given a bounded perturbation of the parameters 

determining the motion equation, the multivalued map of equations of motion is 

characterized by a proposition from Aubin and Cellina [AubCel 84]: 

Proposition 2.2 Assume that the base space M, the tangent space TM, and the 

space of parameters U are manifolds, and the map X:MxU -► TM is a continuous 

and proper section, the space U is a compact subset, and 

VueZV,x^X(x,u) (2-24) 

is continuous, then the set valued map 

F°(x) = {X(x,u)|u€W} (2-25) 

is continuous and compact. 

Consider that the external forces, such as in equation 1.8, are known to be within 

a bound. Pick an external force that is an element in this bound, and determine the 

esponding possible motions. We take the union of all such motions for each force corr< 



2.2.   CONTROL EQUATIONS AS VECTOR FIELDS 37 

element in the bounded region. It is possible in this way to also relax the assumption 

of precise inertial parameters and construct a union of all possible motions when 

these parameters are changed within a prescribed bound. The multivalued map thus 

constructed bounds the possible deviations from X. 

2.2.3    Attainable Sets and Forward Projection 

An attainable set of a point are states reachable at a given instant. Forward projection 

set of a point are all such reachable states. 

For a vector field on a constrained subset like the boundary of a configuration 

space obstacle, any actual physical motion is realizable if an appropriate forces of 

constraint is available. The simplest example is that of a particle mass moving in 

a circular orbit, a constrained subset of the Euclidean plane. The external forces 

acting on this particle must be equal to the centrifugal force if the particle is to stay 

in the circular orbit. If external forces are given as a function of configuration, and 

velocity, the subset of the constrained space, where appropriate forces of constraint 

are met by the physical nature of the constraint, is the subset where motion occurs 

on this stratum. The attainable set and the forward projection on each stratum is 

thus limited to this subset. Let V denote such a subset of TM. 

For s in smooth subsets V C TM, consider the Cauchy Problem of finding all 

absolutely continuous functions (f>: R x V —► TM such that 

0(0, s)   =   s, 

Di<f> (-r- (t,S) )    €    F°((f)(t,s)),      almost everywhere, (2.26) 

£iW0(^|(t,s)j   =   <Kt,s). 

This is a problem in differential inclusion and a direct generalization of ordinary 

differential equations such as equation 2.23. Let I be the interval [0, T] for T > 0 G R. 

Consider the space of all absolutely continuous maps AC(I,TM). For any point 

s G V, let $(s) C AC(R, TM) denote the set of solutions to the Cauchy problem 2.26. 

Denote J^s as the interval of time for which a solution <j> is defined over V. 
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Definition 2.2 Define the attainable set of an initial set I at a time t > 0 as 

A(t,l) = {s' € V|s G 1,4 G *(s), t G J^s, s' = 0(t,s)}. (2.27) 

Definition 2.3 Define forward projection of an initial set 1 as 

FP(I) = {s' G V|s G J,4 G $(s),t€ J^s' = 0(t,s)}. (2.28) 

An attainable set is also a forward projection - albeit subsets given as a function 

of time. However, we restrict the term forward projection to the time independent 

subset defined here.   Forward projection is also known as an Integral Funnel, or a 

Reachable Set. 

If a model of a rigid body collision is assumed, it is possible to extend the def- 

initions of attainable set, and the forward projection from each such smooth set V 

to the whole space CQvaiid, the piecewise smooth tangent cone bundle of the valid 

configuration space. 

2.3    Fine Motion Planning Problem 

2.3.1     Sensing Uncertainty 

A robot is equipped with sensors, for example, position sensor or force sensor. Un- 

certainty in any sensing is defined by a multivalued map. A multivalued map rj as- 

signs to each point of the domain an element in the set of subsets of the range. A 

Measurement or a Sensing Query is a single valued selection from the image of the 

multivalued sensing uncertainty map. When we say "for all sensing ...," we mean all 

sensing queries consistent with the multivalued sensing uncertainty map - informally, 

all measurements consistent with the sensor model. 

Position sensing uncertainty is a multivalued map from the configuration space 

to itself. Denote the uncertainty associated with a position sensor as a multivalued 

map T)Q: QvaUd — Q. For example, 7?ß(q) = {q* G Q|q* G S(q,p)}, where £(q,p) 

is a ball of radius p with center at q. We use the standard convention that any 

measured (sensed) quantity is denoted by letters with * as superscript (Elements 
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in the cotangent space are likely to be confused with measured elements.). The 

actual (real) quantities are denoted with plain letters. So, uncertainty in the position 

sensing defined in the example is a multivalued map that assigns to each actual 

configuration q a subset of the configuration space. Each element q* € ??e(q) is a 

possible measurement that a sensor at q is likely to return. Note that the domain 

of the map T]Q are places where the sensor can be placed which is Qvaiid, but sensed 

values can be inside the C-obstacles, so the range is Q (although, the range of the 

map T)Q is possibly a proper subset of Q). 

Velocity sensors are rare; but practically every robot controller uses position 

derivative data as an estimate of the velocity. Consider a model of the velocity sens- 

ing uncertainty as a bundle multivalued map r)v:CQvaud —> TQ\Qvatid:s i-» r}v(s) C 

T„(S)Q. For example, 7?v(q,vq) = {vq 6 TqQ|v* G Eq(vq,p)}, where Sq(vq,p) is 

a ball of radius p and center vq. Note that if a point q lies on a proper subset of 

the valid configuration space, the velocity sensing query need not be restricted to its 

tangent space. 

A force sensor is a multivalued map from the dual of the tangent bundle of the 

configuration space to itself. Its model is a bundle multivalued map rjf: T*Q\Qvalid —► 

r*ß|ö..i.-d- For example, r}f(q,fq) = {f* € T*Q\angle (f^,fq) < ee, magnitude]^ - 

fq| < e/}, where an appropriate norm and inner product is defined on the cotangent 

space, models a force sensor which to a given force fq, assigns a subset of forces 

that differ in magnitude and angle from fq by a prescribed amount. Each element of 

Vf (Q) fq) 1S a possible force that the force sensor at a point q subjected to a force fq 

is likely to return upon query. 

Let us denote the space of measurements by E. For example, with position, 

velocity, and force sensor, it is a vector bundle over the valid configuration space 

(7 = {E=     U    TqQxT^Q,Qvalid,a}. (2.29) 
qeßuahd 

The fibers of the bundle, in this case, are direct sums of the tangent and the cotangent 

spaces of the valid configuration space.   In general, the sensing uncertainty can be 

modelled as follows: 

Definition 2.4  The sensing uncertainty is modelled as a multivalued map 7} from the 
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tangent cone of the valid configuration space to E, the space of measurements, i.e., 

V- CQvalid —► E. 

With position, velocity and force sensor, map r\ = {rjQ,r)v,r]f}. 

Given sensing uncertainty model r), it is now possible to construct a multivalued 

map K* which is consistent with a given state and the geometric model. The ne- 

cessity of geometric model is illustrated by the force sensor. First, consider a state 

s = (q,vq). It is trivial to combine the position and velocity sensing uncertainty 

maps and construct the set of sensing queries consistent with a state s. This map is 

%: CQvalid -► TQ\QvaUd: s Ä (%(7r(s)),*/v(s)). Now, if a sensing query also contains 

force measurement, it is necessary to know the possible forces that the force sensor is 

likely to be subjected to in order to construct possible measurements. Let us recall 

that the set of possible reaction forces, as a function of the state, is constructed in 

equation 2.21. Then, the consistent measurement map K* is defined as 

JC':Ce«.iu-E:s£       |J      (*{*),*(*(*) M)- (2-30) 
f.(s)e^R(s) 

Let us denote a measurement by m*. A measurement is a single-valued selection 

of the space of consistent measurements, i.e., m*: CQvaud —» E: s t-* m*(s) € /C*(s). 

With position, velocity, and force sensor, m*(s) = (q*(*r(s)),v;(s)(s),f;(B)(s)). In 

this respect, m* is a section of the measurement bundle. We do not assume that 

this section is continuous. Consider now sensor measurements on a trajectory in the 

phase space. Let mj,g denote measurements on a trajectory <j)s such that mj,s: {0} U 

R+ -> E:ty-+ m*(^s(i))- A history of measurements on a trajectory <f)s is the set of 

measurements from the start of time to time t, defined as 

m;j(M] = {m*(Mt')) € JC(M<W € [0,*]} (2-31) 

Although it is possible to write a history of measurements as m*[0,t] without any 

reference to a trajectory, it is misleading since the set of states at all times in the in- 

terval including at the start of time t = 0 is not apparent. A history of measurements, 

mjs, is an observed trajectory. 
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2.3.2 Motion Command and Termination Condition 

A Motion Command M is denoted by a pair (CS,TC) of the Control Statement CS 

and the Termination Condition TC. A control statement determines the time history 

of the state as a multivalued map, i.e., either an attainable subset of position and 

velocity as a function of time or a subset of all attainable positions and velocities. 

In its simplest form, a Termination Condition is a boolean function whose state is 

determined by current and past sensing queries. Typically, we would like to interpret a 

sensing query to determine all possible states of the system consistent with the query. 

If these interpretations are subset of some desired goal, termination condition signals 

the end of the control statement. Define a termination predicate to be a compilation 

of the boolean-valued termination condition. In particular, it compiles the planning 

time inputs such as sensing uncertainty, control uncertainty, geometric world model, 

the termination condition itself, and a description of the goal set Q — {Qa}- The 

interpretation of sensing queries are compiled to a predicate that evaluates to true 

iff the set of interpretation is a subset of the goal. Erdmann [Erd 86] classifies such 

termination conditions into several forms, namely, standard termination predicate, 

termination predicate with state, termination predicate with no sense of time, and 

termination predicate without history or time. All such predicates can be expressed 

as 

tp: 2E -► {true, false}. (2.32) 

In general, a termination condition can be a function into the space of motion 

commands M from the set of current and past sensing queries. In this general sense, 

a termination predicate not only signals the end of execution of the current control 

statement but also determines the subgoal achieved to determine the next motion 

command to be executed. See Mason [Mas 84] for more details. 

2.3.3 One-Step Preimage 

The problem of One-Step Fine Motion Plan for a given goal Q = {Ga}, and a set of 

initial configurations 1, is to find a motion command M = (CS, TC) such that: given 

planning inputs in equation 1.1, if the robot is known to start in the region I, then 
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executing M is guaranteed to take the robot inside Q (goal reachability) and stop in 

it (goal recognizability) [LMT 84, Mas 84, Erd 84, Lat 88]. This simple, but rather 

elusive, statement implies that without knowing the evolution of sensing queries or 

control trajectory a-priori, the robot reaches the goal and the termination condition 

is guaranteed to signal success when the robot is inside the goal. 

Consider the two clauses in the definition of predicate Achieve in equation 1.2. 

For every trajectory <j)s € $(s) condition (i) asserts that either in finite time the 

system certainly stops in the goal or otherwise the asymptotic point must be part of 

the goal. For a perpetually false termination predicate, and a phase flow of a smooth 

field with singularity, there are trajectories that never reach the singular point in any 

finite time - the singular point is part of the goal (see example 2.1(c)). The second 

condition, (it), affirms that if ever the termination predicate can signal success before 

certainly coming to stop, it does so only when the system is in the goal. 

Before giving some simple one-dimensional examples, we reassert essential defini- 

tions and properties [LMT 84, Mas 84, Erd 84, Lat 88]: 

Definition 2.5 A One-Step Preimage of a goal Q = {Qa} for a motion command 

M = (CS,TC) is a subset VM{G) C V such that Achieve^,M,VM(G))• 

It follows from the definition of preimage that 

• A subset of a preimage is also a preimage for the same motion command M, 

and 

• A union of two preimages is also a preimage for the same motion command M. 

Using these properties, the maximal preimage for a given motion command M is 

defined as 

Definition 2.6  The subset ofCQvaiid 

V&AX{G) = {s € V|Achieve(£,M,{s})} 

is the maximal preimage of goal Q for the motion command M. 
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A union of maximal preimages may not be a maximal preimage, though it is always 

a preimage, i.e., 

PM
AX

(GI) U v&AX(g2) C V&
AX

{QI u g2). 

Example 2.1 We give some simple examples of preimages in one-dimensional world. 

Consider Q = Qvalid = R as the configuration space that has no obstacles. Only 

position sensing is available so that T]Q(q) = {q*\ \q - q*\ < pq}\pq > 0 is the model 

of the position sensor (see Figure 2.1). 

a. The control is modelled by CS0 = {<j>q{t) = q + at} where a € R,a > 0 is a 

scalar constant denoting the velocity. Consider as Goal, Go — AB, where AB 

is a closed line segment of length 2pq. If we consider as termination condition 

TC0 = {{A + pq < q* < A + 3/0,)}, then the region (-oo,B] is the preimage 

"P(CSo,TCo)(Öo)- 

b. The control is modelled by CS0. Consider as Goal Q\ = AB U CD where 

subgoals AB and CD are closed line segments defined by points as B = A+2pq, 

D = C + 2pg, and C > B. The goal consists of two line segments AB and 

CD, AB strictly to the left of CD. If we consider as termination condition 

TCi = {(q* = A + pq)y (C + pq < q* < C + 3pq)}, then the region (-oo, D] is 

the preimage P(cSo,TCi)(0i). 

c. The control is perfect and modelled by CSi = {<t>q(t) — qexp(-t)}. Consider 

as goal Qi = {0}, the point at the origin. If the termination condition TC2 = 

{false} is the perpetually false predicate then the whole of the real line R is 

the preimage "P(CSi,TC2)(^2)- 

d. The control is modelled by CS0. Consider as goal Q% = AB, the closed line 

segment defined by points B - A + 2pq - e;0 < e < 2pq. It is of length 

slightly shorter than the diameter of the position sensing uncertainty. Consider 

as termination condition TC3 = {A +pq < q* < A + 3/9,}. The preimage is the 

null region i.e. "P(cSo,TC3)(Ö3) = 0- 
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Figure 2.1: Simple One-Dimensional Examples of Preimages 

e. The control is modelled by CS0. The goal is £3, same as in the previous 

example. Consider as termination condition TC4 = {B — pq < q* < B + pq}. 

The preimage is the region equal to the goal itself i.e. "P(CS0,TC4)(Ö3) = Gz- 

1A    Constructing Some Preimages 

In this section, we present some tools for constructing examples of preimages using 

instantaneous sensing queries for termination. Our preimage definition is like a pro- 

gram verifier. It accepts as input the goal G, the motion command M = (CS,TC), 
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and the preimage region Vy[(Q) and asserts its correctness with regard to Goal Reach- 

ability and Goal Recognizability. In contrast, a planner must construct the motion 

command M and the corresponding preimage region Vyi(G) for a given goal Q. In 

the following, we consider constructing maximal preimages. We follow the program 

of Erdmann [Erd 86] in separating the reachability and recognizability. It will be- 

come apparent that reachability and recognizability depend subtly on each other. 

The definitions, therefore, involve recursive functions. The program, thus, is to first 

hypothesize a control statement. We then construct a recognizable set of the goal 

called kernel [Erd 84, Lat 88]. Kernel depends on both the control statement and the 

termination predicate. With a hypothesized control statement, a termination pred- 

icate can be constructed if possible interpretations of the sensing query are known. 

We present Sensing Interpretations which are mutually consistent, consistent with 

the initial state and consistent with the final state. An interpretation that uses the 

knowledge of the preimage is an interpretation with the initial state. An interpre- 

tation that in addition also uses the knowledge of the termination predicate is an 

interpretation with the final state. 

With the hypothesized control statement and a recursive definition of the termi- 

nation predicate, we give a definition of the kernel. The preimage is a backprojection 

of the kernel. 

2.4.1    Consistent Interpretation and Preimage without State 

Consistent Interpretations 

Given sensing queries, we would like to ascertain the set of states that are consistent 

with the queries. In the presence of several sensors, a consistent set of interpretations 

is likely to reduce the uncertainty in a state. For example consider two sensor queries 

- a position sensing query and a velocity sensor query. We consider first the position 

sensing query by itself; and build a subset of all possible configurations that are likely 

interpretations of the position sensing query. This interpretation set must be a subset 

of the valid configuration space. Effectively, we used the model of the geometric 

world to restrict the interpretation to the valid configuration space.   Add to these 
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interpretations the set of interpretations of the velocity sensing query. This set is a 

consistent set of interpretations of the position and velocity sensing query - mutually 

consistent with each other and with the model of the world geometry, albeit only 

instantaneously in this construction. 

Consider in general, an interpretation of any measurement m* to be a subset of 

the configuration and velocity space. Denote by K the multivalued map of consistent 

interpretations. This map takes elements m* from the space of measurements to an 

element of the set of subsets of the tangent bundle, i.e., 

/C:E —► CQvaiid 

As an example, with position, velocity, and force sensor, the interpretation map K is 

£(m*) = /C(q*, v*,f*) = {(q, vq) G CQ„B,w|Vq G &,„/«,q* G %(q)> 

3vq G CqQva/id,vq G i7v(q,vq), 

3fqG.FR(q,vq),fqG7/f(q,fq)}       (2.33) 

Preimage without State 

Two states si and s2 in CQvaHd are said to be distinguishable iff: 

{m*/s1,s2G/C(m*)} = 0. 

In other words, if two states Si and s2 are distinguishable, it is guaranteed at planning 

time that during a motion there is no instant when the sensory data are consistent 

with both Si and s2. The subset of Q defined as: 

X(G) = {s G Q I Vs' G CQvatid\G,s and s' are distinguishable} 

is called the kernel of Q. If the robot is in x(0), the only states in CQvaHd that are 

consistent with the current sensory data are all in the goal. 

Let Bcs{x(&)) be the backprojection of x(G) for some control statement CS. It 

is a preimage of Q for the motion command (CS,TC) with: 

TC     =     /C(m') C g. 
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(a) (b) 

Figure 2.2: Termination without State 

(c) 

Indeed, by definition of ßcs, a motion starting from within Bcs{x{G)) and com" 

manded according to CS is guaranteed to reach x(&) (if it is not terminated before). 

By definition of x(S), it is guaranteed that the termination condition will become 

true at some instant during the motion. The condition will certainly become true 

when x{G) is attained, but it may become true before. When the termination con- 

dition becomes true, the definition of K guarantees that the robot is in the goal, 

even if x{G) nas not been achieved yet. The above termination condition is called a 

termination condition without state [Lat 88]. 

Example 2.2 The robot is a point in a two-dimensional configuration space Q = R2, 

and there are no obstacles. Hence, Q = Qvaud- The robot is commanded to move 

along a direction vc (we write CS = vc). Due to errors in control, it may move along 

any trajectory whose tangent remains contained in a cone of angle TJV whose axis 

points along vc. The robot can only sense its current configuration and we denote 

the sensed configuration by q*. Hence, m* = q*. Due to errors in sensing, the 

actual configuration q of the robot may be anywhere in a disc of radius pq centered 

at q*. Both r\v and pq are given constants specifying the uncertainty in control and 

in sensing. The goal Q is a rectangle with all its sides longer than Apq. The vector vc 
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is perpendicular to an edge of Q as shown in Figure 2.2(a). 

The kernel x(G) of G is obtained by shrinking Q by 2/>, as shown in Figure 2.2(a). 

Indeed, an actual configuration q of the robot may be sensed as any configuration q* 

inside the disc of radius pq centered at q. The set of configurations q' consistent with 

any q* in this disc forms another disc of radius 2pq centered at q. Hence, if q is in 

X(Q), this second disc lies entirely in Q, while if q is outside \{G) (even very slightly) 

the second disc lies partly outside Q. The backprojection V = Byfc{x(G)) is shown in 

Figure 2.2(b). It is the union of x{G) and a truncated cone of angle 2r)v fitting \{G)- 

The rectangle Q.Pq displayed in Figure 2.2(c) depicts the set of sensed configuration 

q* for which the termination condition evaluates to true. The condition q* € G-Pq 

can be seen as a compiled form of the termination condition /C(m*) C Q.o 

2.4.2    Interpretation and Preimage with Initial State 

Interpretations with Initial State 

A bounded model of control uncertainty on a control statement CS and a prior 

knowledge of a subset of possible initial states allows us to predict all possible future 

states. If the possible initial subset of states is denoted I C CQvalid, define the initial 

state as FPCs(^) as in Definition 2.3. We build an interpretation that is consistent 

not only mutually with other sensors, but also with the initial state. Given a sensing 

query vector m*, consider the set of interpretations /Ccs,r(m*) 

£cs,i(nO = K(m*) fl FPcs(I) (2-34) 

Preimage with Initial State 

Two configurations sx and s2 in CQvalid are said to be CS-P-distinguishable iff: 

{m'/si,s2€/Ccs,7>(m*)} = 0. 

The CS-P-kernel of Q is defined as: 

XCS AG) =f Is e G I Vs' € CQvaiid\G : s and s' are CS-V- distinguishable}. 
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Figure 2.3: Termination with Initial State 

V is a preimage of Q for the motion command (CS,TC), with: 

TC JCcs,v(m*) £ £» 

iff it is equal to the backprojection of the CS-'P-kernel for the control statement 

CS, i.e. if V = Bcs{xcs,v{G))- (An equivalent recursive equation was previously 

established in [LMT 84].) The above condition TC is called a termination condition 

with initial state [SL 91, LLS 91]. 

Example 2.3 Consider the example of Figure 2.2 again. The region whose contour 

is labeled ABCDEFGH in Figure 2.3 is a generalized polygon constructed as follows. 

The straight edge BC is at a distance 2pq from the top horizontal edge of Q. The 
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circular edges AB and CD are circular arcs of radius 2pq centered at P and Q, 

respectively. P (resp. Q) are selected in the top horizontal edge of Q such that the 

intersection of Q and a line passing through P (resp. Q) and parallel to the left (resp. 

right) side of the control uncertainty cone is a segment PP' (resp. QQ') of length 

4p,. The circular edges AH and DE are circular arcs of radius 2pq with centers at P' 

and Q', respectively. The straight edge GF is at distance 2pq from the bottom edge 

of Q. The straight edges HG and EF are at distance 2pq of the left and right edges 

of G, respectively. 

It is rather easy to verify that the region thus outlined is the kernel xc&,v(G) witn 

V = Bcs(XCS,v(G))- In particular, assume that at some instant during the motion 

the actual configuration is the extreme point marked A in the figure. All the possible 

sensed configurations at this instant lie in the disc of radius pq centered at A. If 

the forward projection is not taken into account, the set of all the interpretations of 

all these measurements is the disc of radius 2pq centered at A. The intersection of 

this disc with the forward projection FPcsC?) is completely contained in Q. Hence, 

the point A and any configuration outside Q are CS-"P-distinguishable, so that A 

belongs to XCS,v(G)- Tne same kind of verification can be extended to the other 

vertices B through H, the straight and circular edges connecting these points, and 

the interior of the outlined area. The resulting preimage V is the union of XCS,Tc(£) 

and the truncated cone of angle 2rjv on top of it (Figure 2.3). It is larger than that 

shown in Figure 2.2(b) - the preimage without state. A similar construction was 

given by Erdmann [Erd 84], but it was not defined precisely. The region outlined 

in a dashed line depicts the set of sensed configurations for which the termination 

condition /CCs,-p(q*) Q Q evaluates to true.o 

2.4.3    Interpretation and Preimage with Initial and Final 

States 

Interpretations with Initial and Final States 

Any condition TC divides a forward projection FP(J) into three regions, which we 

denote by Fi, F-i and F3: 
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- F\ consists of all the states s G FP(J) such that, for every possible sensory data 

m* G £*(s), TC evaluates to false, 

- Fi consists of all the states s G FP(J) such that, for every possible sensory data 

m* G £*(s), TC evaluates to true (recall condition (?) in the definition of Achieve 

in equation 1.2), and 

- F3 "= FP(J)\(F1 U F2), i.e. any state in F3 may non-deterministically produce 

sensory data m* G IC*(s), for which TC evaluates to either true or false (recall 

condition (ii) in the definition of Achieve in equation 1.2). 

At every instant during a motion commanded according to CS and issued from within 

Z, if the current state is in Fl5 the motion keeps going; if it is in F2, the motion 

stops; if it is in F3, the motion may either continue or stop. In general, there exist 

subsets of FP(J) that are inaccessible from J because reaching them would require 

to previously traverse .F2, where the motion would have been terminated. This is 

precisely why making the termination condition know itself increases its recognition 

power. 

Given: a termination condition TC, a motion commanded according to CS, and 

starting from within J, a state sa can be reached iff there exist a configuration ss G 

1 and a trajectory in <&(ss) which connects ss to stt without traversing F2, except 

possibly at s„ itself. Let us denote the set of all such states sa by ^cs,Tc(^) Q FP(T). 

Given J, ^cs.TcCn is the Final State of the system [SL 91, LLS 91]. 

So, given a sensing query m*, all interpretations that are mutually consistent, 

consistent with the initial state, and the final state denoted JCcs,i,Tc{m*)i are defined 

as 

£cs,i,Tc(m*) = /Ccs>i(m*)fl^rcs,Tc(^)- 

Preimage with Initial and Final State 

Two configurations Si and s2 in CQvam are said to be CS-"P-TC-distinguishable 

iff: 

{m* / S!,s2 G /Ccs,7>,Tc(m*)} = 0. 
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Figure 2.4: Using Initial and Final States 

The CS-P-TC-kernel of a goal Q is denned as: 

XCSj>,Tc(£) = {s € Q I Vs' € QVaiid\G ■■ s and s' are CS-P-TC-distinguishable} 

V is a preimage of Q for the motion command (CS,TC), with: 

TC    =    /Ccs^.TcCm') C Ö, 

iff it is equal to the backprojection of the CS-T-TC-kemel of Q for the control 

statement CS, i.e., V = ßcs(xcs,T>,Tc(0))- The above condition TC is called a 

termination condition with initial and final states [SL 91, LLS 91]. 

Example 2.4 We show below that using a termination condition with initial and 

final states makes it possible to construct a preimage larger than that of Figure 2.3. 
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The region with thick dashed shown in Figure 2.4 is a generalized polygon constructed 

as follows. Let R (resp. S) be the points in the top horizontal edge of Q such that 

the intersection of Q and a line passing through R (resp. S) and parallel to the left 

(resp. right) side of the control uncertainty cone is a segment RR' (resp. SS') of 

length 2pq. The line R'S' that forms the upper portion of the thick dashed contour 

consists of two circular arcs of radius 2pg, with respective centers R and S, and a 

straight segment at distance 2pq from the top edge of the goal Q. The rest of the thick 

dashed contour is the lower part of C/'s boundary. The region thus outlined is the 

kernel XCS,7>,Tc(£) with V = Bcs{xcs,v,Tc(G)) and TC = [/Ccs,7\Tc(«0 Q G]- 

The region outlined in a thin dashed line depicts the set of sensed configurations for 

which the termination condition evaluates to true. 

One can verify that the region V is a preimage of Q. Indeed, all the motions 

starting from within V are guaranteed to reach the goal (if they are not terminated 

before) and none of them can be terminated before the goal has been attained. In 

addition, none of these motions can leave the goal without being terminated. 

In order to see how the termination condition uses the knowledge of itself, assume 

that at some instant during the motion the actual configuration is the point designated 

by R' in figure 2.4. All the possible sensed configurations at this instant lie in the 

disc of radius pq centered at R'. If neither the forward projection nor the termination 

condition are taken into account, the set of all the interpretations of all these sensed 

configurations is a disc of radius 2pq centered at R'. The intersection of this disc with 

the forward projection FPcs(^) contains a sector that is not contained in Q. This 

sector (the grey sector in Figure 2.4) can only be attained from V by crossing the 

segment marked R'R". Since for any configuration in this segment the termination 

condition evaluates to true, the sector cannot be attained. The preimage built in 

Figure 2.4 is substantially larger than the one in Figure 2.3.o 



Chapter 3 

Control Uncertainty 

We now consider the problem of computing the boundary of a forward projection, 

and a backprojection, and the boundary of perturbations of the stable and unstable 

manifolds of singularities on smooth sets of an arbitrary, but autonomous control 

scheme. The control equations include state-dependent differential equations govern- 

ing general rigid body motion either in free space or in contact space. Section 1.2.1 

considered one such example of a second-order equations of motion as a vector field on 

a smooth manifold TM of constant dimension. Here, M itself is a smooth manifold 

containing a strata Si of Qvalid. For simplicity of notation, however, we use M to 

represent the tangent bundle TM. Therefore, it is understood that for second-order 

equations, M is twice the dimension of the strata. 

The first section reviews results from Differential Inclusion.  This review is pre- 

sented on a standard Euclidean space. Other sections consider manifold structure. 

3.1    Differential Inclusion Problem 

Consider the multivalued map F° in Proposition 2.2. At every point s G M, its image 

is a subset of the tangent space TSM. Graphically, if this region is thought of as a 

neighborhood of a nominal vector field X, it contains the tip of the vector X(s) and 

a region around the tip X(s). 

It is sufficient to assume that the problem of differential inclusion is given on 

54 
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Euclidean spaces. For s G U C Rn, U a compact subset of Rn, consider the Cauchy 

problem of finding all absolutely continuous functions (j>: R x U —► Rn 

<£(0,s)   =   s, 

Di<j> I -T- (t,S) )    €    F°(0(£,s)),      almost everywhere. (3.1) 

This is a problem in Differential Inclusion and a direct generalization of an ordinary 

differential equation such as equation 2.23. Questions in ordinary differential equa- 

tions such as existence of solutions, continuity of solutions, continuous dependence on 

initial conditions have a natural counterpart in differential inclusion. These problems 

of differential inclusion were studied extensively since 1930's. For a historical account 

and the results, refer to a survey article by Blagodat-skikh and Filippov [BIFi 86] and 

a book by Aubin and Cellina [AubCel 84]. 

3.1.1     Calculus of Multivalued Maps 

Let upper case letters F, G,... denote subsets of Rn. Define the distance between 

two subsets F and G to be d(F, G) = mia€F,s'eG d{s, s'), where <2(s, s') is the standard 

Euclidean distance between points. We now describe continuity and Lipschitz conti- 

nuity of multivalued maps F: U —> Rn. Continuity of a multivalued map follows two 

different but equivalent notions of continuity of a single-valued map. They are: 

1. For any neighborhood N(F(s)) of F(s), there exists a neighborhood N(s) of s 

such that F(N(s)) C N(F(s)). 

2. Any generalized sequence s^ converging to s, and for any vs € F(s), there exists 

a sequence v8fc € F(sk) that converges to vs. 

Although these properties are equivalent for a single-valued map, they correspond 

to upper semicontinuous and lower semicontinuous multivalued maps, respectively. 

Consider the following two examples of set valued maps: 

1. The mapping F from R to its subset defined by F(0) = [-1,1] and F(s) = 

{0},s ^ 0 is an upper semicontinuous map, but not lower semicontinuous. 
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2. The mapping F from R to its subset defined by F(0)  =  {0} and F(s)  = 

[-1,1], s / 0 is a lower semicontinuous map, but not upper semicontinuous. 

A multivalued map is continuous if it is both upper and lower semicontinuous. Cor- 

responding to Lipschitz single-valued maps that are continuous but not continuously 

differentiable, there exists Lipschitz multivalued maps. First define an e-neighborhood 

of a subset K C R" by B(K,e) = {vs G Rn|d(vs,A') < e}. A multivalued map is 

Locally Lipschitz at s0 if there exists a neighborhood N(s0) of s0 and a constant L > 0 

called the Lipschitz constant such that 

Vs',s € N(s0),        F(s) C B(F(s'),Ld(s,s')). (3.2) 

The multivalued map is Lipschitzian if 

Vs', s G U,        F(s„) C B(F(s'), L d(s„, s')). (3.3) 

A C° neighborhood F° of a vector field is a multivalued map that assigns to each 

point in the manifold a set of tangent vectors. It is apparent that if the boundary 

of neighborhood F° is continuous, or Lipschitz, the multivalued map is respectively 

continuous, or Lipschitz. 

3.1.2    Selection Scheme for a Multivalued Map 

The selection problem for a multivalued map F: U -► Rn is finding a single-valued 

map /: U -* Rn such that /(s) € F(s) for all points in U (when the base set U is a 

finite set, the problem is same as the Axiom of Choice). In general, there may not 

exist a continuous selection when the multivalued map F is continuous. If a prescribed 

rule for selection is specified, such as minimal selection or Chebishev selection, the 

selection can fail to be Lipschitz even when the map F is Lipschitz. See examples in 

Aubin and Cellina's book [AubCel 84]. 

Consider the selection problem for a multivalued map F°: U -+ Rn. A parametn- 

zation of the multivalued map is a selection scheme such that a single-valued map 

y.pn x u _ Rn is equivaient to F° where F°(s) = {y(p,s)|p G Vn) for Vn, an 

n-dimensional closed disk. In the following, we consider the parametrization problem 

for the boundary 8F of the multivalued map F. 
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First, define the support function of a non-empty subset F C Rn for a vector 

ifi € Rn as a scalar function c(F,ip) = supveF(tp • v). As an example consider the 

support function of a ball Br(a) of radius r with center at a as c(Br(a), ip) = a.-ip+r\^\. 

Several properties of a support function necessary to define its differential are available 

in the article by Blagodat-skikh and Filippov [BIFi 86]. In particular, a support 

function is convex with respect to ip if c(F,aipi + ßfo) < QC{F,ipi) + ßc{F, ^2) f°r 

a,ß > 0 and ^1,^2 £ R"- Define the subdifferential of a support function c(F,rp) 

with respect to tp as dc(F, V'o) = {v e Rn|v • (V> - tpo) < c(F, ip) - c(F, ip0), V> € Rn} 

The subdifferential of the support function c(ßr(a), i[>) is 

c,c(Br(aW) = (a+^       if^0i 

la+B,(0),   if V = 0. 

If the support function is finite, it is differentiable with respect to i[> at V'o if and 

only if the subdifferential dc(F, V>o) is single-valued. A multivalued map F is strictly 

convex in the direction ipo iff the support function c(F, V'o) is differentiable. It is 

strictly convex iff the support function c(F,ip) for VV'. 7^ 0 is differentiable. As a 

consequence of strict convexity of a multivalued map F, it is possible to construct a 

parametrization of the boundary SF namely 

dc(F,r!>)/di>:Sn-l-+-Rn 

which is continuous. An example is the subdifferential dc(Br(a),ip)/dtp of a ball 

jBr(a), given earlier. We later impose that this parametrization of the boundary is a 

smooth or piecewise C1 differentiable. With the assumption that F° as a multivalued 

map is strictly convex with finite support function, we denote the corresponding 

parametrized field as 

Y: S"-1 x U -► Rn: (p, s) K-> F(p, s) 6 SF(s). (3.4) 

3.1.3    Flows of Bounded Perturbations of Vector Fields 

Consider the space of absolutely continuous functions AC(I,Hn) with / = [0,T], T > 

0 and a norm \\<j>\\AC = <£(0) + /0
r \<f>(r)\dr on AC(I,Rn). Consider $(s) C AC(I,Rn) 
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the set of all solutions to the Cauchy problem 3.1. This denotes all absolutely con- 

tinuous functions of time defined at s which are solutions of the differential inclusion 

problem. The following is a basic result established by Cellina and Ornelas [CelOrn] 

on path connectedness of the set of solutions of the Cauchy problem. 

Theorem 3.1 Let the multivalued map F be non-empty, closed, Lipschitzian, and 

autonomous. The selection map from U to AC(I,Rn) that assigns to any point s a 

solution d>s G $(s) is continuous. 

As a corollary, they also establish that the solution set $(s) and the attainable set 

A(t,s) can be continuously parametrized, and in particular they are analytical sets. 

Corollary 3.1 There exists closed subset U of a separable Banach space of continuous 

maps from the set U to the space of absolutely continuous functions AC(I,Rn) and 

continuous function g:U xU -» AC such that g(s,U) = $(s). 

Corollary 3.2 There exists closed subset U of a separable Banach space and contin- 

uous function h: U x U -► Rn such that h(s,U) = A(t,s). 

Consider another result from Staicu and Wu [StWu 91] that proves that any solution 

in the solution set can be deformed to another. 

Theorem 3.2 Let F be a non-empty, closed, Lipschitzian, and autonomous multival- 

ued map on the set U. Let s -► 0° and s - ft be two selection from s -> *(s) contin- 

uous from U to AC{I,Rn). Then, there exists a map H from [0,1] x U -► AC{I,Rn) 

with the following properties: 

1. H is continuous. 

2. ff(0,s) = C and H(l,s) = <j>l 

3. For A G [0,1], #(A,s) is in $(s). 

This result together with the continuity of the selection implies that the solution set 

$(s) is path connected in the space of absolutely continuous functions AC(I,Rn) 

with the topology induced by the norm. 
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A theorem from Aubin and Cellina [AubCel 84] asserts that the solution set of a 

Cauchy problem for non-convex sets in the right-hand side of equation 3.1 is dense in 

the solution set of the convex hull of the non-convex set. 

Theorem 3.3 (Relaxation Theorem) // the multivalued map F° is Lipschitzian, 

the set of solutions to the Cauchy problem in equation 3.1 is dense in the set of 

trajectories of the Cauchy problem 

0(0,s)   =   s 

Di<j>{— (t,s)J    €   co(F°(^(i,s))),      almost everywhere (3.5) 

where co(F) denotes convex hull of the set F. 

It is sufficient to consider co(F°) if we assume that the set valued map F° is Lips- 

chitzian. Strict convexity of F° is also necessary for parametrization of the boundary 

of the multivalued map as in equation 3.4. So, from now onwards we only consider 

those multivalued maps F° that are strictly convex and Lipschitzian. 

In summary, if we assume that the multivalued map F° is non-empty, and strictly 

convex, then the boundary of the multivalued map is parametrizable. If it is also 

Lipschitzian, and autonomous, and the domain is a compact subset, then the solution 

set of any point is path connected in the space of absolutely continuous flows. It also 

follows that the solution set of any path connected set is also path connected. 

3.2    Boundary of Control Uncertainty 

A possible description of all flows $(s) are the set of states expressed either as a 

function of time called the attainable set or the time-independent set called forward 

projection defined in Section 2.2.3. These are multivalued maps from the phase space 

to itself. As a consequence of Corollary 3.1 and 3.2, the attainable set and the forward 

projection admit representation by their boundary. Denote the topological boundary 

of the attainable set at time t as 8A(t, s), and that of the forward projection as £FP(s). 

In the following sections, we present necessary conditions for the characterization of 

the boundary of the attainable set and the forward projection. 
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If the differential inclusion problem is specified on compact manifolds, then each 

phase flow <ps is defined for all t G R. However, since we consider compact subsets 

with boundary, the solutions <j)s € $(s) may be defined for unequal intervals of time. 

Denote J^ as the interval of time for which a solution </>s is defined. 

3.2.1    Boundary of Attainable Set 

The attainable set denned in Section 2.2.3 is a multivalued map A{t,s):U -> Rn. 

The following theorem from Blagodat-skikh and Filippov [BIFi 86] characterizes 6 A, 

the boundary of the attainable set. 

Theorem 3.4 Assume that the support function c(F°,ip) of the set F°(s) is contin- 

uously differentiable with respect to ip and the vector dc(F°,ip)/dip and dc(F°, rp)/ds 

are Lipschitz functions with respect to tp and s. Consider the 2n-system of differential 

equations 
. = dc(F'M    , _ _8c(f,fl 

dtp     ' ds 

Then, for 0 < ii < t*, the boundary 8A{ti,s0) of the set of attainability coincides 

with the set r(*i,s0) of all points <t>{ti,s0), where the pair (<f>(t,s),ip(t)) is a solution 

of the system 3.6 with the initial condition 

<f>(t0,s0) = s0, 4>(t0)<=S, (3.7) 

and S = {^| |V>| = 1} is the unit sphere in Rn. The inclusion 8A{t, s0) C T(t, s0) holds 

for t> t*. The time t* is the infimum of the times t' such that <f>i(t', s0) = fai?, s0) for 

two solutions (<j>utpi) and (^2,^2) of system 3.6 with non-coinciding initial conditions 

of the form 3.7. 

The attainable set may not be closed, see [CelOrn]. 

3.2.2    Boundary of Forward Projection 

The Forward Projection on smooth sets defined in Section 2.2.3 is a multivalued map 

FP: U —► M where U is a compact subset of a manifold M.   It is the union over 
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time of the attainable set. Firstly, flow functions </>s € $(s) are absolutely continuous 

functions of time. As a consequence of path connectedness of the attainable set 

,4(£,s) [StWu 91], the Forward Projection, FP(s), is path-connected. Therefore, with 

additional conditions on the multivalued map F°, we can hope to find a reasonably 

well-behaved boundary of the forward projection. 

In computing the boundary of the forward projection, we compute admissible 

trajectories on the boundary. For the one-dimensional case, the boundary of the 

attainable set is defined by two trajectories - intuitively the fastest and the slowest 

moving particles that start at the point. An explicit integration of two ordinary 

differential equations, therefore, represents the boundary. The forward projection is 

bounded by the initial point and the fastest moving component of the attainable set. 

In higher dimensions, the boundary is computed as a solution of a Hamilton-Jacobi 

problem - equivalent to solving a scalar partial differential equation. It describes the 

boundary of the forward projection outside regions we call Singular Invariant Subsets, 

which are subsets where differential inclusion specification F° contains singularities, 

i.e., 0 € F°. The first section computes the boundary of the Singular Invariant 

Subsets and gives the condition when such a boundary can be uniformly labeled as 

a singularity of type source, sink, or saddle. Outside such regions, the boundary of 

the forward projection is described by the solution of the Hamilton-Jacobi problem. 

If a singular invariant subset of the saddle type is present, then the boundary of 

the forward projection must also contain a subset of the boundary of perturbation 

of unstable manifolds of the saddle. Such additional components are present in the 

description of the forward projection of points that lie in the perturbation of the stable 

manifolds of the saddle. We present characterization of the boundary of perturbations 

of the stable and unstable manifolds of a saddle in another section. 

The Hamilton-Jacobi Theorem allows one to solve scalar partial differential equa- 

tions by solving ordinary differential equations - known as the method of characteristic 

in partial differential equation literature. Historically, a scalar non-linear partial dif- 

ferential equation has also been called a Monge's Cone [Tr 57, John 82]. This method 

of characteristic is also used by Butkovskii [But 82] in computing admissible trajec- 

tories in problems of controllability and finite control. 
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3.2.3     Singular Invariant Subset 

If the orbit of all possible absolutely continuous functions that are solutions to the 

Cauchy differential inclusion problem remain in the subset, then the subset is a 

strongly invariant subset. If there exists at least a solution such that its orbit re- 

mains in the subset, then it is a weakly invariant subset. Consider a point sin M 

such that 0 G F°(s). A possible flow is the trivial one - a constant map, <j>{t,s) = s, 

defined for all times. Such points are, therefore, at least weakly invariant. 

Definition 3.1   The Singular invariant subset 

Zi = {s € M|0 € F°(s)} 

consists of all points on the manifold such that there exists a vector field in the neigh- 

borhood F° with a singularity at the point. The union U,-2,- of Singular invariant 

subsets of M is denoted Z. 

If a multivalued map F° is given as a neighborhood of some nominal vector field 

X, and X(s) = 0 for some s, the region F°(s) definitely contains zero. For other s' 

nearby s, when X(s') ^ 0, the region F°(s') may still contain zero since (-X(s')) is 

in F°(s'). 
Singular Invariant subsets are closed subsets of manifold M because the multi- 

valued map F° is closed. Each of the connected components of a singular invariant 

subset is labeled Z{. Consider the boundary 6F° of C° neighborhood F°. With con- 

ditions that give the boundary SF° a parametrization in equation 3.4, the map Y is 

a well-defined map from the (n - 1) + n(= 2n - 1) dimensional manifold 5n_1 x M 

to TM, the 2n-dimensional tangent bundle of M. 

Proposition 3.1 The singular invariant set is implicitly defined by the neighborhood 

F° if the parametrized boundary field Y is a transversal section of the tangent bundle 

T = (TM, M, r) for each parameter p € Sn~l. 

Proof: The proof follows from a direct application of Implicit Function Theorem. In 

the following, all constructions are based on local tangent bundle charts.   Consider 
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the local tangent bundle chart (Uk,(j>k) of the tangent bundle r — {TM, M, r} and a 

chart (Vj,rjj) of 5n_1 around a point (p,s) € V3x Uk, where F(p,s) = 0. The map 

Y induces a corresponding map Y' on the local tangent bundle chart 

Y'-.riM x J>kUk - 4>kUk x R": Mp),&(s)) „ (M*),Y'(Vi(P),M*))) 

The derivative of this map is 

[DiY'   D2Y'_ 

Let a be a projection map defined as a: (f>kUk xR"-» R": (<f>k(s), Y'(r)j(p), (f>k(s))) i—► 

Y'(rjj(p), <t>k(s)). The derivative of the composite map a o Y' is 

0 idnxn 
= [DlY'    D2Y'} 

D.Y'   D2Y'\     l J 

Since, Y is a transversal section for each p, D2 Y' is full rank. By the Implict Func- 

tion Theorem, the condition a o Y'(r)j(p),<f>k(s)) = 0 defines a continuous function 

g'jk'-i]jVj —► 4>kUk such that Y'(r}j(p),g'jk(r)j(p))) = 0. Define the composition map 

9jk = Vj ° 9jk ° ^k1'- ^j —* Uk- Piecing all these gj^s over different charts, a global 

function #,•: S"-1 —* M is constructed such that V(p,p,-(p)) = 0. o 

The function p, is the required map implicitly defining the boundary of the singular 

invariant set. In principle, the field Y may have several such regions and the boundary 

of each of such region 8Z{ is defined by a unique #,. 

Proposition 3.2 Each singular invariant subset Z{ is disjoint when the parametrized 

vector field Y satisfies conditions given in the previous proposition. 

Proof: Consider two such regions Z^ and Z{2. They are regular subsets of M, and 

hence if they have a point in common, so must their boundary. The boundary of 

such regions are described by maps pij,p,2:5
n-1 —+ M. They can not have a point 

So € M in common since functions <jj, and p,2 are unique maps from 5n_1 to M from 

the previous proposition, o 

In addition, if the parametrized vector field Y is a hyperbolic section for each 

parameter then the following proposition shows that each singular invariant subset 

can be characterized. 
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Proposition 3.3 Each singular invariant subset Z{ can be characterized as being 

of type sink, source, or saddle, if the parametrized boundary field Y is a hyperbolic 

section and C1 in variables p and s. 

Proof: Consider implicitly defined function gi: S
n~l -* M in an earlier proposition 

such that Y(p,0,-(p)) = 0. For any point p0 € Sn_1, the linear map A>Y(po,&(po)) 

is either of the sink, source, or saddle type. We claim that this is invariant to the 

choice of point p0. Since Y is C1 section, the derivative D2Y changes continuously on 

the sphere 5n_1. Without proving, we state that the eigenvalues of a linear operator 

depend continuously on the operator. The eigenvalues of D2Y change continuously on 

the sphere. If D2Y(p0,gi(p0)) is hyperbolic, all eigenvalues have non-zero real parts. 

Since, eigenvalues change continuously and have non-zero real parts for all points on 

the sphere 5"_1, the sign of the real parts do not change at any point. Hence all 

points have the same characteristic spectrum, o 

If the vector field is not hyperbolic, the singular invariant subsets may not be 

characterized as above. However, consider the following observation [PalMel 82]: the 

set of all hyperbolic vector fields among the set of all C1 vector fields forms an open 

and dense set. Hence, any non-hyperbolic field can be perturbed by an arbitrary 

small amount to obtain a hyperbolic field. In light of this, our restriction to only 

hyperbolic fields covers almost all fields. Recall that this restriction is placed on the 

parametrized boundary field Y - any interior field needs to be merely integrable. 

3.2.4    The Cone Boundary Surface - Hamilton-Jacobi Form 

A cone C(s) with vertex at (s,0) is defined to be a subset of TSM such that if a 

point (s,vs) is in this subset, then so are points (s,Avs),A > 0. Consider the C° 

neighborhood map F° with conditions that give it a parametrization as a vector field 

Y in equation 3.4. Consider the cone C(s) given by all half-straight-lines passing 

through (s,0) and points in F°(s). Since set F°(s) is convex, the cone is also a 

convex cone. The elements in SC(s) € F°(s) are defined to be the Cone Boundary 

Field and a Dual Cone is defined by 

C*(s) = {w^ G rs*M|w;(vs) < 0,Vvs € F°(s)} (3.9) 
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<t>,(t,s) 
4> (t,s) 

, 8C(s) 

6C*(s) 

C(s) 

— 5C(s) 

C(s) 

8C(s) 

Figure 3.1: A Canonical Two-dimensional Example of a Cone Boundary Field 

All points s £ M\Z have a non-empty dual cone. For points in Z, the cone C(s) 

spans the complete space TSM, since 0 € F°. It is easy to see that the dual cone is 

empty at such points. The topological boundary of the cones is denoted SC(s) and 

6C*(s) (see Figure 3.1). 

After a brief overview of Hamiltonian systems, we give constructions necessary 

to compute the boundary of the forward projection. For details on Hamiltonian 

systems, see Abraham and Marsden [AbMa 78]. Consider manifold T*M which has 

a canonical symplectic structure given by a non-degenerate, closed two form u € 

A2(T*M). Darboux's Theorem [AbMa 78] guarantees the existence of a canonical 

form u = £ ds* A dpj for any non-degenerate, closed two form u. The corresponding 

coordinates (s',p,-) on T*M are called canonical symplectic coordinates. 

Definition 3.2 A Hamiltonian Vector Field XH on T*M with symplectic structure 
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to for a Hamiltonian function H: T*M —> R is defined by 

u(XH,Y) = dH(Y). 

The following proposition from Abraham and Marsden [AbMa 78] characterizes the 

solution set of a Hamiltonian system. 

Proposition 3.4 In canonical coordinates (s\pi) 

where J = 

equation 

0     / 

-/    0 
A curve (s(t),p(t)) in T*M is an integral of XH iff Hamilton's 

■i-2E ■ - JJL 
s ~ dPl'

,Pi~   ds' 

is satisfied. 

Define a Hamiltonian H as follows 

H: T*M -+ R: ws* Ä swpVseFo(s)<(vs). (3.10) 

F° are closed convex subsets and therefore a supremum is attained. It follows from 

the definition of the dual cone in equation 3.9 that the function H vanishes for w* G 

5C*(s) and v8 € SC(s) for points s in M \ Z - places where boundary cones are 

non-empty sets. In general, consider subsets 

H = constant. (3-H) 

They define a subset of the cotangent bundle called Characteristic Set C and describes 

a scalar partial differential equation. 

A solution of the level surfaces of function H in equation 3.11 is an integral man- 

ifold described by level sets of a function z: M -» R. For this function to be a 

solution, the composition map H o dz: M -* R is the required constant map where 

dz: M —* T*M is a section of the cotangent bundle, i.e., 

H odz = constant. (3.12) 

This is an equation of the Hamilton-Jacobi type [AbMa 78, pp. 381]. 
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3.2.5    Forward Projection of a Point 

Consider the following interpretation of the Hamilton-Jacobi equation. A section 

dz = Y^e^ds' = 52pids% € T*M represents a normal to the integral manifolds z = 

constant. Recall the definition of function H in equation 3.10. The vanishing of 

function H on the level surfaces of z therefore implies that the normal to the level 

surface is orthogonal to the boundary of cone 8C(s). There are (n - 1) non-singular 

possible normals to any hypersurface in a space of dimension n. One constraint, on 

the normals of surface given by equation 3.11, specifies (n - 2) allowable non-singular 

normals at the point. This describes a (n - 2) family of level surfaces z passing 

through each point s € M. The Forward Projection of a point is defined by the 

envelope of these (n - 2) family of surfaces. The following theorem characterizes the 

integral manifolds z: M —»■ R. 

Theorem 3.5 (Hamilton-Jacobi, [AbMa 78]) Let XH: T*M -> TT'M be the 

Hamiltonian vector field corresponding to function H:T*M —► R. Let TM'.T'M —► M 

be the natural projection and DT^: TT'M —► TM be the corresponding derivative 

map. Let z: M —► R be a function. Then, the following two statements are equiva- 

lent: 

(i) For every curve s(t) in M satisfying 

s(t) = Dr*MoXH(dz(S(t))) 

the curve t —► dz(s(t)) is an integral of XH- 

(ii) z satisfies the Hamilton-Jacobi equation H o dz = constant, i.e., 

■  dz 
H(s\ 7—T) = constant. 

OS* 

This is the method of characteristics used in solving scalar partial differential equa- 

tions by solving the system of 2n ordinary differential equations. The integral curves 

(s(t),p(t)) of XH thus obtained are called Characteristics. The elements s(t) - 

DTlfoXH(dz(s(t))) in the tangent space Ts(t)M are called Characteristic Directions 

and the vector field XH, besides being the Hamiltonian Vector Field, is also called the 
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Characteristic Vector Field (see Figure 3.2). The situation described in the theorem 

asserts that a characteristic remains on the level surfaces of z. Therefore, the forward 

projection of a point is a surface foliated with (n - 2) of such characteristics passing 

through the point. We assert this situation below [But 82]: 

Corollary 3.3 Let H: T*M -» R: w* & supVg€Fo(8)u£(vB) be a C2 Hamiltonian 

function corresponding to a differential inclusion problem F°:M —► TM. Then, for 

all points s0 = s(0) € M\Z, the boundary of the forward projection £FP(s0) is 

foliated by s{t) for 0 < t < t*, where (s{t),p{t)) is an integral curve of XH with 

initial condition (s(0),p(0)) such that #(s(0),p(0)) = 0. The time t* is infimum of 

the times t' such that sqi{?) = sq2(i') for distinct initial conditions p(0) = qi and 

p(0) = q2 satisfying #(s(0),p(0)) = 0. The inclusion £FP(s0) C s(t) holds for times 

t>t*. 

Proof: In canonical coordinates, curve t -* («'(*) »Pi(0) is an integral curve of XH. 

We show that the other condition of (i) of Theorem 3.5 is also satisfied and, by 

equivalence of (i) and (ii) from theorem 3.5, the curve t -» (s'(t),pi(t)) keeps H 

constant. Hence, t -»• s^t) foliate the boundary of the forward projection. 
• piff riff \ 

The Hamiltonian field in local coordinates is given by XH = {s\Pi, ^-, -97)- 

The map DT*M:TT*M -» TM: (s,p, w(8,p),a(s,p))  & (s,w(s,p)) gives the horizontal 

element. Therefore, DT*M O XH(*«'(t).P.-(*)) = If' which is e(lual to *'"(') since ' ~* 

{sl(t),pi(t)) is an integral curve of XJJ- 

The initial conditions (**"(0),Pi(0)), such that i?(s«'(0),pi(0)) = 0, enumerate all 

such s{(t) passing through the point s'(0). o 

An alternative proof of the corollary follows from the assertion of Hamiltonian 

systems that integral curves of XH keep H constant. 

Example 3.1 Consider the following parametrized vector field Y in the Euclidean 

three space R3: 

Y((9^),s) = + 
r cos(0) cos(^) 

r sin(0) cos(V>) 

rsin(V0 

(3.13) 
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with a > r. The boundary of F° is a two sphere parametrized by (6, ip) with #, ip € 

[0,27r). Assume canonical coordinates (s',p,-), on the cotangent space T*R3. Consider 

first a function F = pir cos(#) cos(^) -f p2r sin(0) cos(V') + £3(0 + rsin(^)) which is 

the inner product of an element (pi,p2,Pz) and the elements Y on the boundary of 

F° defined above. Function H is defined as the supremum of this function on the 

domain 6,ip € [0,27r). Setting ff = 0 and |^ = 0, one can obtain 0 = arctan(p2/pi) 

and V' = arctan(   /„P3„    „), and hence the function i? is given by 

H = ry/pl + pi + pi + aps. (3.14) 

The characteristic vector field of function H is given by 

■   _   BE rpx 

dP<      yfpJ+pJ+pl 

A3     =     M =  ™  + a 
^3 y/pl+pl+pl 
dH 

Pi   =   T— = 0,i = 1,2,3. 

Integrating first p\ = 0, and then substituting the resulting constants in the rest, one 

can obtain the following characteristics 

Pi(t)   =   c.i,i = 1,2,3; 
TC' 

y/4 + 4 + 4 
s*(t)-s3(0)   = r\        t + at, 

y/4 + 4 + 4 
(3.15) 

with constants c{. The vector (s1(0),s2(0),s3(0),p1(0) = cup2{0) = c2,p3(0) = c3) 6 

T*R3 satisfies function H in equation 3.14. In this example, with the initial condi- 

tion that function H vanishes, it follows that £ = , „c?i.    „, and it is possible to 

eliminate constants C; and t and obtain a canonical cone equation 

., _ (s\t) - «W , (At) - *2(Q))2   (A*) - *3(Q))2 = 0 
j.2 r2 a2 _ r2 

with vertex (s1(0),s2(0),s3(0)) and axis aligned with the s3 axis. 0 
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As pointed out earlier, function H attains zero as supremum in M \ Z. At such 

points the cone boundary field 6C{s) are tangential to the level surfaces of function 

3.2.6    Forward and Back Projection of a Regular Closed Set 

Consider a closed non-null regular set I. The boundary of the forward projection 

£FP(I) can be arbitrarily complex. It is possible that solutions leave the closed set 

I at all points of the boundary and, therefore, locally, the boundary of the forward 

projection is null. On the other hand, the forward projection of a closed set can be 

the set itself. In particular, if all solution sets for all points in I remain in X, then 

they make the set 1 strongly invariant. Aubin and Cellina [AubCel 84, pp. 233] give 

conditions for a closed convex set to be so invariant. In such a case, the boundary of 

the forward projection is the boundary 81 of the closed set 1. In contrast with these 

two extremes, we identify an intermediate case in this section when the boundary of 

the forward projection of I consists of subset of its own boundary 81 and the integral 

manifolds. 

Assume that the topological boundary 81 of the closed set I is a level hypersurface 

of a function fj\ M -* R. The boundary of the forward projection of this closed set 

1 consists of parts of its own boundary 81 and the integral manifolds of the form 

z: M -+ R satisfying the Hamilton-Jacobi equation 3.12. Such integral manifolds are 

tangential to the boundary «51. Let A denote a submanifold on the boundary 81 

where an integral manifold is tangential to the boundary. Let the natural inclusion of 

this subset in M be i: A -♦ M. The submanifold A is called an Initial Manifold. The 

integral manifold 2 is a solution of an Initial Value Problem with initial manifold A of 

the Hamilton-Jacobi equation 3.12. The conditions for the existence and uniqueness 

of an integral manifold tangential to the boundary 81 are those that are necessary 

for a well defined forward projection of the closed set 1. 

Consider the characteristic set C C T*M of the Hamiltonian function H in equa- 

tion 3.11. By definition, there exists an integral manifold of H if and only if the initial 

manifold A is contained in the characteristic set. In addition, if the integral manifold 

is a submanifold, then the initial manifold must also satisfy a genericity condition. 
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A Characteristic 

on the Boundary 

of Backprojection 

df(s)=p=(p p p) 
/ s      1    2  3 

.12 3. 
S=(S ,S ,S ) 

Characteristic 

Direction at s 

Figure 3.2: Boundary of Backprojection of a regular, closed set {s|/j(s) < 0} 

Next we define a relation between the tangent space of the initial manifold and the 

characteristic direction: 

Definition 3.3 A point s in the initial manifold A, a subset of the characteristic set 

C, is a non-characteristic point if the characteristic direction DT^ O XH(dz(c(t))) is 

not contained in the tangent space Di(T8A). 

An initial manifold is non-characteristic if all its points are non-characteristic. The 

following theorem [Arn 88] gives the existence and uniqueness conditions of an integral 

manifold through an initial manifold. 

Theorem 3.6 Let s be a non-characteristic point of the initial manifold A. There 

exists a neighborhood U of s such that the integral manifold in C C\U with the ini- 

tial manifold A C\ U exists and is locally unique. The integral manifold consists of 

characteristics passing through points in the initial manifold A. 

The Theorem 1.1 gives condition for the existence and uniqueness of a well-defined 

initial manifold A which are also conditions necessary for the existence of an integral 

manifold that is locally 5FP(J), the boundary of the forward projection. 
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Proof of Theorem 1.1: An application of the Preimage Theorem shows that A 

is a well-defined (n - 2) submanifold. For A to be a subset of C, note that H o <2/T|A 

vanishes identically, o 
The tangentiality of the boundary of set I and the integral manifold <JFP(I) at 

points of A can occur in two ways. The hyperplane along which the integral manifold 

and the boundary of the closed set SI are tangential can keep the set F° and the set I 

on opposite sides or on the same side. We assume here that an appropriate distinction 

is made in choosing a initial manifold A,-, a subset of A, that keeps the two on the 

same side for the forward projection and on opposite sides with negative Hamiltonian 

H for backprojection. An explicit check of this part is also done to characterize the 

forward projection of singular invariant set in Section 3.2.10. 

Example 3.2 Consider characterizing the initial manifold A for the backprojection 

of a sphere for the differential inclusion problem of Example 3.1. Let the boundary of 

initial set I (in accordance with the notation in Chapter 2, this should be denoted as Q 

for goal, since the backprojection is that of a goal and not an initial set 1) be given by 

the zero set of the function fr = (sl)2+(s2)2 + {s3)2-b2. The corresponding section dfx 

is £?=12{si)d(si). The composition map H o dfj is -2ry/{s1)2 + (s2)2 + (s3)2 - 2as3, 

where H here is the negative of the H in equation 3.14. Map fa x H o dfc has 

zero as a regular value and, therefore, A = (fx x H o d/i)"1(0) = {(s1)2 + (*2)2 + 

(s3\2 _ t2 = 0} n {s3 = ±7}. Of the two connected components, the component 

Al = {(s1)2 + (s2)2 + (s3)2 - b2 = 0} D {s3 = ^} keeps the set I and -F° from 

equation 3.13 on the opposite sides. The integral manifold of -H with H from 

equation 3.14 with the initial manifold Ai defines the boundary of backprojection 

locally.o 

3.2.7    Cone Boundary Vector Field for Smooth C° Neigh- 

borhoods 

In this section, we give an explicit computation of the cone boundary field from a 

smooth parametrization of the neighborhood boundary SF° in equation 3.4. We also 

show that, with some assumptions, the cone boundary fields must be degenerate at 
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the boundary of singular invariant sets. 

First, we define the vertical lift and horizontal part of an element of the second 

tangent bundle [AbMa 78]. Consider elements (s, vs) and (s, ws) in TSM. The vertical 

lift of (s, ws) relative to (s,vs) is 

(ws)^s = ^(vs + *w.)|1=0 € TVs(TM). 

The horizontal part of a vector ßVs G TVsTM is Dr(ßVs), where r = {TTM, TM, r), 

is the second tangent bundle. In natural charts, it is easy to see that (ws)vs = 

((s,vs),0,ws) and the horizontal part of an element aVs = ((s,vs),wVs,aVs) is 

(s,wV8). An element in TTM is a vertical lift of an element in TM if, and only 

if, the horizontal part is zero. 

Consider the case when the boundary of F° is parametrized as a smooth map Y 

in equation 3.4. Consider for each s £ M, the map 

Qs-.Ts^MS71-1) - R": (P, vp) ft 7r4 o (D1y(p,s)vp + (y(p,s))^(PiS)),     (3.16) 

where 7r4(s, vs, W(8)V8),a(8iVs)) = a(SiVs) is the natural projection on the fourth factor. 

If sphere Sn~l is mapped diffeomorphically by map Y, then the tangent space to the 

image sphere at any point y(p,s) is an (n - l)-dimensional hyperplane. We look for 

points (p,vp) € TSn~l whose image by the map g& aligns with the element Y(p,s). 

These are points where map ga vanishes for some vp. The corresponding elements 

F(p, s) are tangential to the image sphere and lie on the boundary cone 5C(s). Notice 

that at points s in 2 which are interior points of singular invariant sets, map gs does 

not vanish because no element "K(p,s) lies in the tangent space to the image sphere. 

If Y maps (n - l)-sphere diffeomorphically at each point so that D{Y is onto, 

and the map ga is surjective, then ^(O) defines a smooth (n - 2)-dimensional subset 
0 . , 

of an (n - l)-sphere at each point in M \ 2- To see this, consider the derivative 

map by D{gB) = [Dii^vp + DiYDx\p + DtY D\Y] which has at least rank 

n, since gs is surjective. The linear map D{Y is surjective, so it has rank (n - 1). 

Therefore, elements vp are uniquely determined. The remaining one condition defines 

a codimension one set on the sphere 5n_1. The subset of codimension one of 5n_1 is 
0 n 

an (n - 2)-sphere for points in M \ 2, since the multivalued map F" is convex. 
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Let / be the implicitly defined function that takes points in Sn     to Sn     so that 

the cone boundary vector field YB is defined as 

yB(r,s) = F(/(r,s),s) (3.17) 

satisfying g~l (0) from equation 3.16, :. c, TT4 ODyY(/(r, s), s)v/(r,s) + 7(/(r, s), s) = 0. 

More precisely, map / is defined as /: Sn_2 x M\ Z -» Sn~l. 

Example 3.3 Consider a parametrized vector field Y in plane given by 

c   0 

0   <f 

9i 

L92 
+ 

r cos(p) 

r sin(p) J 

where p € (0,2n] and r is a scalar denoting the radius of the control uncertainty 

circle. The corresponding cone boundary vector field YB consists of a left and right 

component corresponding to two points {p0,Pi} G S° defined on R2\{c2q2
l+d2ql-r2 < 

0}. They are 

*B({PO,PI},(9I,92)) = 

-(cr3gi)+cag?+«Pgn»T<fr«V-'-a+c2g;-HPgg 

-(dr2q2)+c2dqlq2+d3q3
7±crqiy/-r*+c2q2+<Pql 

c*ql+dW2 

where ± corresponds to two points {p0,Pi} G 5°. The function /: S° x R2 -» 5 de- 

fined by p = arctan(-drq2±cqiyj-r2 + c2?2 + d2^, -crqi^dq2yJ'-r2 + c2q\ + A2q\) € 

(0,2?r] can be extended to the boundary SZi = [c2q\ + cPq^ - r2 = 0} of the singular 

set. However, cone boundary vector field YB at the boundary of the singular set is 

not differentiable in this case, neither is map /.   o 

If a cone boundary vector field YB is defined which is continuously differentiable 

on the boundary of the singular invariant set and the boundary is a diffeomorphic 

image of Sn~\ then the following proposition shows that the field YB can not be of 

full rank at points of singularity. 

Proposition 3.5 Consider a Cl cone boundary map YB given by equation 3.17 on 

M\(Z\SZi), where DyY is onto SZi. IfYB for a point r0 G Sn~2 has a singularity in 

SZi, then the linear map (DYB)ro at the singular point is degenerate /ordim(M) > 1. 
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Proof: The singularity of the cone boundary vector field YB are subsets of the sin- 

gularity of the field Y. A construction of the set of singularities of field Y, denoted 

S2{, is given in the proof of Proposition 3.1. First consider field (YB)TO for a point 

r0 G Sn~2 and a corresponding isolated singularity s0 € 6Zt, the itk component of the 

set of singularities of the field Y, so that (Yß)ro(s0) = YB(r0,s0) = 0. There exists 

a point po € Sn~l so that Y(p0,s0) = 0. Consider map &:£n-1 —► M constructed 

in the proof of Proposition 3.1 that maps the (n — l)-sphere onto the set of singular 

points of the field Y. In particular, <fc(po) = s0. If field YB is Cl on SZi, the map / 

is also well defined and differentiate. Differentiating equation 3.17, we get 

D2YB = D2Y + DxYD2j. (3.18) 

The identity /(r0, <7,-(po)) = Po follows. Differentiating this with respect to points 

in the (n - 1) sphere we get D2f o Dg{ = tdn_ixn_i. Multiplying both sides of 

equation 3.18 by Z)p, and using the derivative relationship D2YDgi = —D{Y on 8Z{ 

from the Proposition 3.1, we establish 

D2YBD9i   =   D2YDgi^DlYD2fDgi 

=   -DiY + DiY W„-ixn-i 

=     0„_ixn-l- 

If D{Y\szt is onto, Dg{ is of rank (n - 1). Therefore, D2YB can not be of full rank 

for n > 1. o 

3.2.8    Convex Polytope as C° Boundary 

When multivalued map F° is smooth, Proposition 3.5 shows that the cone boundary 

vector field YB at the singular points must be degenerate. Consider regular, convex 

polytopes as the boundary of F° at all points. Then, there exist vector fields whose 

cone boundary field has non-degenerate isolated zeroes. In these cases, the forward 

projection of a singular invariant subset is well defined. This and the following sec- 

tions give constructions related to a convex polytope map F°. A subsequent section 

considers the forward projection of singular invariant subsets. 
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Consider the following representation of F° as polytopes. A polytope is bounded 

by hyperplanes {Vi, i = 1, r} in the tangent space. A specification of a hyperplane Vi 

is a pair {X„ a,}, where X{: M -► TM is a vector field on M, and a,: M -* T*M is a 

section of the cotangent bundle. A hyperplane Vl is an (n - l)-dimensional subspace 

defined by fcer(a,-), the kernel of the one-form, displaced by the vector field X{. If 

{Xi,ai} specifies Vi, then {Xt,-a,} is another possible specification. Between the 

two choices, let the positive half-spaces of the hyperplanes define the polytope. 

Definition 3.4 A polytope neighborhood is 

\X(s) € F°(s)|a,-(s)(X(s)) > a,-(s)(X,-(s)),Vi = l.r}, (3.19) 

where at 's are non-degenerate, any two of them are linearly independent, and together 

they define a regular, convex polytope at all points of M. 

The intersection of the positive half spaces of a set of hyperplanes is denoted {Vi, i = 

z'i... im} or more explicitly {{Xi, a,}, i = i\... im}. In this notation F° = {{X,-, a,}, 

i = 1 ...r}. An intersection njt=,-1i2...imPjt of "i hyperplanes is denoted Vili2...im. A 

Supporting Hyperplane {X, a} to a convex set K satisfies 

a(X) = min a(Y) (3.20) 

[Lang 72]. A Supporting Hyperspace to a convex set Ä' is a tuple {0,a} satisfying the 

previous relationship in equation 3.20. 

Consider two hyperplanes V{ = {X;,at} and Vj = {Xj,aj} so that V{j is a face 

of the polytope F°. A hyperspace V containing segment Vtj is given by 

V = {X = 0, a = aiiXifa - ^(X;)«,} (3-21) 

(see Figure 1.1). The hyperspace ker(a) specifies an (n- l)-dimensional distribution. 

Let this (n - l)-distribution determined by the hyperspaces V{ and V} be integrable 

in the sense of Frobenius [Spiv 79], i.e., 

a Ada = 0. 

Consider a C1 vector field X that belongs to this hyperspace, i.e., a{X) = 0 and X € 

Vij. Let X be non-singular on an open set U C M, and (j)(t,s) be the corresponding 

flow. Consider the following proposition from Arnold [Am 88]: 
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Proposition 3.6 Let X: U —► TM and a:U —► T*M be smooth non-singular con- 

travariant and covariant sections such that a(X) = 0 . If an (n - 1)-dimensional 

distribution determined by ker(a) is integrable, then the flow <f> of X keeps the distri- 

bution determined by a invariant, i.e., 

(&).(s)(ker(a(s))) = ker(a(0,(s))). 

Consider SZj, the boundary of a singular invariant subset Zj. A segment on this 

boundary is the image of a hyperplane T\. A point s0 on this segment is the image 

of a point p0 € Sn~l, so that the boundary vector field y(p0,s0) of equation 3.4 

vanishes. It follows from equation 3.19 that a,-(so)(X,-(s0)) = 0. The subset of M, 

where functions at(X;): M —► R for a hyperplane "P,- vanishes, is defined as a transition 

hypersurface denoted %. 

Proposition 3.7 The transition hypersurfaces % = a,(Xi)-1(0) are smooth subman- 

ifolds of M if the boundary field Y is a transversal C1 section. 

Proof: We show that zero is a regular value of the function a,(X,) if field Y is a 

transversal section. Then, the set (a,-(X,-))-1(0) is a smooth submanifold of M by the 

Preimage Theorem [GP 74]. Consider a chart (f/,x) of M such that y(p0,s0) = 0 € 

Vi, and s0 € U. With the representation of a vector field Y as FPo(s) = al(s)g^ + 

a2(s)g|2 + ... + an(s)g^ and an element a € T*M in the dual coordinate system as 

a(p) = axdxl + a2dx2 + ... + andxn, a function a(Y): M —► Rn is given by 

a(Y) = a1(s)a1(s) + a2(s)a2(s) + ... + an(s)an(s). 

The derivative of this function is 

=   [<*i\ 
öa'(s) 

+ N 
aa'(s) 

dxi 
=   [aADY+lYfDia), 

where [ai\ = [<*i a2 ... an] is a row vector and Y = [a1 a2 ... an]T is a column vector. 

Differentiating the equality form of constraint in equation 3.19, 

[a,-] [DY] + YTD(a{) - D{Qi{Xi)) = 0, 

^   [at] [DY] = D(ai(Xi)) - YTD(a{) (3.22) 
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By assumption the a,-'s are non-degenerate. It follows from equation 3.19, that Y is 

singular when a,(X.) vanishes. So, the second term on the right hand side vanishes. 

DY at this point is full rank because Y is transversal. Therefore, £>(at(X,)) is 

surjective.o 

A hyperspace V of the form in equation 3.21 is supporting to F° at those points 

s G M where 

Oi(s)(Xi(s)) > 0,    and    ai(s)(Xi(s)) < 0 (3.23) 

(see Proposition 3.10 later). We call the submanifolds (a;(X,-))-1(0) a transition 

hypersurfaces % because a supporting hyperspace V can cease to be supporting at 

points of these submanifold. 

Consider points in M\Z where neighborhood F° does not contain the origin, i.e., 

0 g F°. The elements of the cone boundary vector field YB at any point s are those 

that belong to a supporting hyperspace of the convex polytope F°(s). Consider a 

region of M where a hyperspace V of the form in equation 3.21 is supporting. In this 

region, consider a C1 field YB so that YB G V{j. By Proposition 3.6, flow <j>B of YB 

keeps the hyperplane ker(a) invariant. As a result, flow <f>B is a leaf on the boundary 

of the forward projection of a point in this region. All such flows <f>B of vector fields 

YB on the face T>a form a smooth surface of the boundary of the forward projection. 

Flows belonging to all such supporting hyperplanes foliate the complete boundary 

SYY. 

3.2.9    A Piecewise Smooth Singular Invariant Set 

The boundary SZj of any singular invariant set is a union of segments of transition 

hypersurfaces. Any two hypersurfaces Tk and % intersect to define a segment Tk, of 

codimension two on the boundary SZj, because the two a.'s are, by assumption, lin- 

early independent. Three of these hypersurfaces define a codimension three segment. 

The boundary SZj consists of a disjoint union of segments of codimension one to n 

- a codimension n segment being a vertex defined by the intersection of n or more 

such hypersurfaces. Consider the facial structure of a singular invariant set Zj. Call 

faces T/ {  ,m > 1, the proper faces.  Add to them Zj, the interior of the singular 
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invariant subset and 0, the null set, which are improper faces of dimensions n and —1 

respectively. The singular invariant set Zj is thus a disjoint union of faces of dimen- 

sion — 1 to n. A proper face 7^t-2 im, is formed by the intersection of hypersurfaces 

{Tip,p = l,m}. Each face T£_im is differentiate. The boundary SZj is union of the 

proper faces and is piecewise differentiable. Notice that the symbol for a transition 

hypersurface is %, and that of a its subset on the boundary of a singular invariant 

set 8Zj is T/. 

Lemma 3.1 (Orientation Lemma) An orientation of D(ai,(X,)) is determined at 

all points of proper faces T/ C Zj by the choice of the orientation of a, in equa- 

tion 3.19. 

Proof: Consider a point s € T/ and a neighborhood Br(s) C M so small that it 

does not intersect any other transition hypersurfaces.  The neighborhood is split in 
0 

two halves by the surface T', one of which is Br(s)n Zj- For s' in this half, the origin 

lies in the positive half space of the hyperplane "P, by virtue of equations 3.19 and 3.1. 

Therefore, a;(s')(0) = 0 > Oft(s')(X:(s')) . Similarly, for points s' in the other half 

a>i(s')(Xi(s')) > 0. Hence, an orientation of D(at(X,)) at s € 7? is fixed. There 

exists a S < 0 so that a;(X,)_1(5) C\ Zj ^ 0, i.e., negative value level hypersurfaces 

of ai(Xi) belong to the interior of the singular invariant set. Intuitively, this orients 

D(ai(Xi)) seen as a normal to 7^J, in dual coordinates, pointing from the inside of 

the singular invariant set Zj to the outside, o 

Consider now the tangents to the proper faces of the singular invariant subsets. 

The tangent space to a transition hypersurface % is ker(D(ai(Xi))) which is also a 

tangent space of 7^, tne subset of SZj. For brevity, we denote D(cti(Xi)) by DV{ 

so that DVi\ M —» T*M is a section of the cotangent bundle. The tangent spaces 

TT/ _i of proper faces of codimension m > 1 are defined analogously. They are 

n*:=ij...imfcer(Z)'Pfc), the intersection of the tangent spaces of each participating face. 

Also, the tangent spaces of the participating faces bound a convex set as shown below. 

Proposition 3.8 The hyperplanes {0,DVk},k = iy ...im, bound a convex set at a 

point s € %li2...im if hyperplanes Vk = {Xk, a*}, k = ii,... im, bound a convex set. 
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Proof: At points s G ^i2...im, recall that equation 3.22 reduces to [a,-] [DY] = 

D(ai(Xi)). Map DY is linear, and a convex set is mapped by a linear map to a 

convex set [Lang 72]. o 

In addition to tangents, we define Supporting Hyperspaces and Supporting Sub- 

spaces at a point s of a proper face T^ im. First recall that if {{0, DVk}, k = ii... im} 

is a convex set, then so is {{0, -DVk}, k = i\... im}- 

Definition 3.5 A hyperspace 

{ker(a),a € Ts*M|vs G TsM,DVk{s){vs) < 0,Vfc G H .. .»m =*- a(v8) < 0}    (3.24) 

is a Supporting Hyperspace £o the set Zj at a point s G ^...im • Denote all such sup- 

porting hyperspaces by H{%[ .im, s). A Strictly Supporting Hyperspace is a supporting 

hyperspace distinct from every DVk, k = z'i,.. .im. 

The supporting hyperspace at a point in T/ is uniquely defined by the kernel of DVt. 

However, there exists a family of hyperspaces at points on segments of codimension 

two or more. The following proposition shows all such supporting hyperspaces. 

Proposition 3.9 All Supporting Hyperspace of a convex set defined by hyperplanes 

{X,ßk},k = ii,...,im, are of the form {X,J2k=iu...,imckßk},ck > 0. 

Proof: Recall that if {X,a} is a supporting hyperplane to a convex set K, then 

a(X) = minygA- a(Y). The proof is by contradiction. Without loss of generality, 

choose X = 0. For any point v in the convex set, ßk(v) > 0 and a(v) > 0, where 

{0,a} is a supporting hyperspace. First, a supporting hyperspace {0,a} contains 

the intersection of all the kernels of the defining hyperspaces ßk.   Therefore, a is 

linear combination of these hyperspaces, i.e., a - £fc=tl imckßk.   If any Cj < 0, 

then consider a point v in the convex set so that ßk(v) - 0, k / j and ßj(\) > 0. 

Therefore, a(v) = Ejt=,-,,...,<„, CfcA(v) = ^-(v) < 0 by construction. Hence, {0,a} is 

not a supporting hyperspace.o 

Definition 3.6 A subspace W(s) is a supporting subspace if it is a subspace of a 

supporting hyperspace V in W(7? ..im,s). A Strictly Supporting Subspace W(s) is a 

subspace of a strictly supporting hyperspace such that W(s)f\TT^_im = 0, the trivial 

element. 
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Consider a local neighborhood J5r(s) of a point s € T£_im, where Br(s) is an open ball 

of radius r > 0. Let r be arbitrarily small so that each transition hypersurface %k,k = 

1... m, intersects the boundary of the ball 5Br transversally and the intersection of 

the ball with other transition hypersurfaces is empty. Such a neighborhood exists 

because transition hypersurfaces intersect transversally. Each transition hypersurface 

Tik divides the ball in two halves. The m hypersurfaces divide the ball in 2m or more 

open quadrants. These quadrants can be divided into two groups, namely, Strictly 

Non-supporting Quadrants and Strictly Supporting Quadrants. 

Definition 3.7 A point s' is in a Strictly Non-supporting Quadrant of a ball Br(s) 

of a point s G T^_im if there exists eik < 0, k = 1, m or eik > 0, k = 1, m such that 

s'eaik(Xik)-\e,k),\/k=l, m. 

The quadrant Br(s)DZj is a strictly non-supporting quadrant. If e^'s in the definition 

of a Strict non-supporting quadrant are allowed to be zero, we have a Non-supporting 

Quadrant. In particular, BT(s) n Zj is a non-supporting quadrant. The complement 

of non-supporting quadrants in the ball are Strictly Supporting Quadrants. A corre- 

sponding definition of a Supporting Quadrant is as follows: 

Definition 3.8 A Supporting Quadrant of ball BT of a point s € 1'i1...im consists of 

the Strict Supporting Quadrant and Ufc6tl...im7^ \ {(^keii.-im^k}- 

A Supporting Quadrant of a point s € TJ is null, since its strict supporting quadrant 

is null and the set 7? \ T? is also null. 

Proposition 3.10 Let s' be a point in the Supporting Quadrant of a point s € T^ im. 

Consider the tangent space TS>M. There exists a supporting hyperspace of F°(s') that 

contains the face "Ptl...,m(s') of F°(s'). 

Proof: We show that if a hyperspace contains the segment "Ptl...{m, then ak{Xk), k = 

il .. .im, are not all strictly positive or negative. By definition, this is the condition 

for a point to be in a supporting quadrant and hence the claim. 

Consider ß £ T*,M.   Consider a plane V = {0,ß} through the origin that is 

supporting to the convex set defined by V^k = i\.. .im and containing "Ptl...,m(s'). 
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Since, ß contains the kernel of all the planes ak,k = z'i ...im, and is supporting to 

the convex set, it follows that ß = £fc=t]...tm ^«fc, ck > 0, not all ck zero and for a 

point v in F°(s'), ß{v) > 0. If point v lies on Vh...im(s'), then ak{v) = ak(Xk), and 

/?(v) = 0. So, ß[y) = E*=M...im cfcafc(v) = £fc=ll...im ckak(Xk) = 0, but since ck > 0, 

not all zero, it follows that not all of the ak(Xk) are strictly positive or negative, o 

3.2.10    Forward Projection of Singular Invariant Set 

Now, we consider computing the forward projection of a singular invariant set. This 

boundary of the forward projection is also the boundary of perturbations of the 

unstable manifolds. The perturbations of the stable manifold is the forward projection 

of the negative field s G -F°(s). 

Consider a point s on a face 7? ...,m of codimension m on the boundary of a singular 

invariant set SZj. Consider any face preserving parametrization of the boundary of 

the polytope F° such as parametrized vector field in equation 3.4 in a ball Br(s), of 

radius r > 0 centered at s. Let X denote a constant parameter field with X G "P,i...tm 

in the ball Br{s) such that X(s) = 0, and s is a hyperbolic singularity of X. Let a 

be defined as in equation 3.21 for any ik, and i/, k,l € l...m. Since X G Viy...im, 

a{X) = 0. Also, if X G P.,..^, then a specification {Xik,aik} of a hyperplane Vik is 

also equivalent to {X, aik} for VA; G 1,..., m. 

Let the dimension of Unstable Subspace Eu{s) be p. If A = DX(s) is the lineariza- 

tion of the field at the singularity, then the number of eigenvalues of A with positive 

and negative real parts are equal to p and (n - p) respectively. The linear map A 

has a unique decomposition TSM = Eu © Es so that A is expansion on the subspace 

Eu of dimension p and a contraction on Es of dimension (n-p). Denote Au = A\EU 

and As = A\ES [HirSma 74]. Consider a further splitting of As(ov similarly of Au) as 

As = {Al
s,...,A

r
a}, where each A\ = A.\E; of size q{ x qu is an elementary Jordan 
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Matrix of the form 
A 

1     A 

1     A 

1    A 

on the diagonal of As, so that Es = Ef ffi.. .©-E1;?. Consider a matrix Al
s corresponding 

to a real eigenvalue A. It is easy to notice that if {e^k = 1,</,-} is the basis of Ef 

that brings A\ into an elementary Jordan matrix form, then the subspaces defined 

by {e^k > k0},l < k0 < #, are invariant subspaces. In particular, {e^k > 2} is a 

(<fr — 1 )-dimensional invariant subspace. 

Consider now Proposition 1.1. The proof follows several lemmas. Eventually, we 

show that the hyperplane determined by Eu © E*_\ is a supporting hyperplane of 

F°(s). In addition, we also prove that Zj and F°(s) lie in the same half space of the 

hyperplane. 

Now, consider combinatorial implication of the proposition on the dimensions of 

the stable, unstable subspaces, and the dimension of the set T^_im. If dim(Eu) = p, 

then dim(Es) — n — p. The dimension of invariant subspace E'_\ is (n — p — 1). 

Since, subspace Ea_i is a subset of TST£ im , the dimension of the tangent space of 

the face T^ im on which s lies is equal to or greater than (n — p — 1). There can 

be at most (p + 1) hypersurfaces meeting at the point, i.e., m < p+ 1. The one- 

dimensional subspace Es Q Eti which does not belong to the tangent space TT£ im 

must correspond to a real eigenvalue. It can not belong to a complex eigenvalue for 

their invariant subspaces are of even dimensions and, therefore, Es_i can not be an 

invariant subspace. As an example, consider a case when Es © Es_i corresponds to a 

one-dimensional subspace of a real eigenvalue which has just one elementary Jordan 

block. Then, it must be the basis e\ of the subspace Ef of the elementary Jordan 

matrix because, then only the remaining (n — p — l)-dimensional subspace of the 

stable subspace remains invariant. 
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Lemma 3.2 Let q-dimensional invariant subspace be contained in the tangent set 

TV  i  , where m <n- q, then the face V^...lm C TT? _Am. 
*1 •■■*m ' 

Proof: The tangent space T7?„.im is denned as r\k=h...imker(DVk). The lemma 

asserts that the subspace C\k=ix...imVk is a subset of r]k=ii...imker(DVk). The derivative 

DVk of transition hypersurfaces and the hyperspaces Vk = {Xk,ak} are related by 

equation 3.22, which reduces to [ak] [DX] = DVk at a singular point. If g-dimensional 

subspace W is a subset of TT^im, then DVk{W>) = 0, * = h ...tm. Since W is also 

invariant subspace of DX, it follows that ak(DX{W>)) = afe(W) = 0, fc = ii. • ■ tm. 

o 
The following lemma shows that the subspaces Eu 0 Ely and £s of TSM, for 

s G Tj • and X(s) = 0, and s a hyperbolic singularity, are determined independent 

of how X is chosen on the face Vh...im. Recall that the subspace E^ is determined to 

lie in the tangent space, T7?..fra. However, the eigenspaces of E'_x and the eigenspace 

of Es QELY may rearrange in the subspace Es due to different choices of X. Never- 

theless, some subspaces are determined independent of such a choice (face preserving 

parameterization as in equation 3.4). 

Lemma 3.3 The subspaces Eu®Es_t and Es ofTsM are determined independent of 

any parametrization if the conditions of Proposition 1.1 are satisfied. 

Proof:  Consider a chart (U,x) of M, s € U, x(s) = 0, which has submanifold 

property, i.e., 
rl/^ExF;    x{U r\T^im) = E x {0}. 

The dimensions of the real vector spaces E and F are (n - m) and m respec- 

tively.    Let the matrix of the linear map A =  DX(s) in the chart be denoted 

A,   =    \Jn-mXn-m      K-rnXm    ^   ^^  ^   .g   &  ^^  boundary  field  lying  in  Vh...im 

.   Lmxn—m Mmxm   J . 
with any parametrization so that X(s) = 0, and s is a hyperbolic singularity. *or 

notational convenience, denote the face V{l...im by Vu.m by renumbering, if necessary. 

Next, we show the structure of the matrix A'. 

Choose coordinate maps xn~m+i  =  a;(X,-),*  =  l,m as a basis of the vector 

space F. This is possible, since submanifold 7(_m is given as f\i=Um{xn~m+l)~ (°) = 
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fti=i,m{®ik(Xik))~
l(0). Let the induced basis on TM be denoted ß. The matrix of 

DVi = D(ai(Xi)) = Dxn~m+i,i = 1, m, in this basis is given as Dp = [0 /], where 0 

is m x (n — m) zero matrix and I is m x m identity matrix. Let the matrix of hyper- 

spaces Vi = {0, a,-}, i = 1, m, in this basis be Cp = [a,j]. By Lemma 3.2, the kernel of 

a,-,i = l,m, and DVi,i = l,m, are the same, so a,j = 0,j = l,n — m,i = l,ra. So, 

C/j = [0 JV], where Oismx(n-m) zero matrix and N = [<Xij],j = n - m + 1, n, i = 

1, m. From QjA' = Z)^ of equation 3.22, it follows that NL = 0 and NM = I. Since, 

the a's are non-vanishing, iV is non-zero. Therefore, L = 0 and M = JV-1. Notice 

that subblock M is determined independent of any parametrization of X. 

Now, let v be elements of TE and w those of TF. The structure so determined, of 

A', makes the tangent space of the submanifold T( m the invariant subspace Es_y, as 

it should since an element (v,0) in T0E is mapped to (Jv,0) also belonging to T0E. 

Now, for a vector (v, w), w / 0 to be an eigenvector of A', w must be an eigenvector 

of M. But M is determined independent of any parametrization of X and, therefore, 

subspaces Eu © Eil and Es of T8M are determined, o 

Let ß = {e,-,i = l,n} be a basis of the tangent space TSM. Let < , >p be a 

inner product that makes the basis ß of T8M an orthonormal basis and < , >* be 

the induced inner product on T*M using the dual basis. Consider a representation 

in dual coordinates {e*,i = 1, n} of elements a-, = a^ej + a.^eJ; + ... + a,ne* € T*M. 

Let the corresponding matrix B be [a,-j]. The following lemma for some elements of 

the inverse of matrix B is based on a property of convex sets. 

Lemma 3.4 Let the matrix B~l = [T/,-J] in the basis ß be the inverse of a full rank 

matrix B = [a,j]. Let for some j0, Of,j0 > 0,z = l,n, and {0,a,-},i = l,n, bound a 

convex set, then r)j0i > 0,i = l,n. 

Proof: Let (n — 1) independent elements v,-,i = l,n — 1, span a hyperplane W 

of Rn. Define a one form 7 € R71* by 7(v) = de*[vi... vn_i v]T. There exists a 

unique w G Rn such that <v,w>= 7(v). Vector w is cross-product of elements 

v,-, i = 1, n — 1, - a generalization of the usual cross-product in three space. 

Without loss of generality, assume that a^0 =<ai,e'-o>*,i = l,n — 1, are not all 

zero.   Otherwise, a renumbering of a,,i = l,n, will work because they are linearly 
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independent so not all aijo are zero. Consider an (n - 1)-dimensional hyperplane 

W C TS*M spanned by linearly independent set a- = a,— <at-,e*o>* e*o,i = l,n - 1. 

Define a corresponding one form 7. It follows that 7(v) = c <v,e*o>*, c G R. The 

elements of B~\ the inverse of B, are rjlok = j^B)Bkj0, where Bfcj0 are co-factor 

matrices of matrix B. The co-factor Bk]0 is 

det 

a\ 

JO 

fc"1 rou) 

With the assumption that {0,a,-},t = l,n, bound a convex set, we show later that 

Bkjo = hl(e*0),h > 0. Now, 7(e*0) = c <e*0,e*0>*= c. Hence, r/Jofe = rfäfej^io = 

^       Since, diagonal terms of B~lB are equal to one, consider the jotf term 

r=s:fc 17**4 = rfi) ^6*a^- Since'a11 afcjo - °'and hk - °'H follows that 

j^ must also be positive.  Hence, Vjok = j^h are all greater than or equal to 

zero. Now to see that Bkjo = bkl{e*Q),bk > 0, consider the following two cases. 

1. If fc = n, Bfcjo=7(eJ,),so6„ = l. 

2. For ft < n: Take e*o in the n"1 row of 7(e*o) to the kth row which is equivalent to 

(_l)n-fc7(e*J. This leaves o/fc... cd as the last (n- ft -1) rows. Taking a* in 

the (ft+1)"1 row to the n"1 row is equivalent to setting (-l)n~*-1(-l)"" 7(ej0) = 

(_l)2(n-fc)-i7(e*j. Now, to replace a'k in the nth row by <, consider the 

following. The (n - 1) plane spanned by fcer(e*o) is supporting hyperplane to 

the convex set {0,<*;},i = l,n, because from Proposition 3.9, < on,e)0 >*= 

a..  > 0, i = 1, n. There exist constants a,-, i = 1, n, so that £i=i,n a^i = e}0 =>■ 

E-li,n«i«: + Ei=i.»«i < «»«* >* «* =e; =► E.-=i.n «.•«:■ = (i - £i=l.»fl< < 

a.,e.o >.)e*o ^ Si=i,nai«! = 0 =* < = -Efei.n-1 £*S- Constant a« is not 

equal to zero, because otherwise the relation in the fourth statement would 

make a,-,t = l,n - 1, linearly dependent. The implication from the third 

statement about the fourth follows from an expression obtained by taking the 

inner product of the first statement with e*o.   Replacing a'k in the nth row 
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by a'n makes it equal to Bkj0.  So, in total Bkjo = (-^)(-l)2(n"':)"17(e*0) = 

(ä)(-l)2(-*-1)7(e;) = (*H*%), "0 h = £ > 0. 

Lemma 3.5 Lei s G 7]jf fcm w/iere t/ie conditions of Proposition 1.1 are satisfied. 

Then, the C° neighborhood F° given by {Pi = {0,a,-},i G {&i ...A;m}} ai this point 

and the convex set {{0,—DVi},i € {ki...km}} lie in the same half space of the 

supporting hyperspace Eu © Eti- 

Proof: The proof is divided into two parts. First, we consider the case when m = n, 

so that s is a vertex on SZj. Then, we prove the general case. Consider the splitting 

of the linear map A = DX, so that As = A\ES and Au = A\EU are the linear 

maps on the stable and unstable subspaces, and T8M = Es © Eu. Consider a basis 

ß = {es,e.j,j = l,n — 1}, of TSM induced by the eigenspaces of the linear map 

A, where e.s corresponds to the one-dimensional subspace of a real eigenvalue not 

contained in the tangent space TT£ km, as in the conditions of Proposition 1.1. Let 

{es*,e*,j = l,n — 1} be the corresponding dual basis of T*M. Consider an inner 

product < , >ß, and < , >p that make these basis into an orthonormal basis. 

If s is a vertex, then dim(Eu) = (n - 1), dim(Es) - 1, and As = -A, A > 0. 

The codimension one subspace E*_\ of the stable subspace is the trivial element 0. 

Subspace ker{es") = Eu © Es_i is supporting to Zj. Therefore, by Definition 3.5 

and Proposition 3.9, it follows that an orientation of e" can be chosen so that < 

e"',DVi>*ß> 0,i € {k\...kn}. Let the matrix of hyperspaces V{ — {0,a>i},i € 

{fci...fcn}, in this basis be Cß = [a,j] and the matrix of DVi,i € {ki...kn}, be 

Dß = [rjij]. If the basis ß expression of the linear map A — DX is denoted Aß, then 

relations CßAß = Dß =*■ Cß1 = AßDß1 follow from equation 3.22. 

By the sign convention in equation 3.19, all elements v € TSM, so that a,-(v) > 

0,i e {ki...kn} belong to {Vi,i G {fci...fcn}}. In basis ß, this implies that there 

exists an element z0 = [zx... zn]T, z{ > 0, so that CßVß = zß for vß € {Viri G 

{&!...&„}}. Then we show later that such elements v also satisfy the condition 

es'(v) < 0. Therefore, by equation 3.20, {0, -es'} is a supporting hyperplane of 

{Put G {h...kn}}.  Now, by construction, <-e°',-DVi>}=<es',DVi>}> 0,i G 
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{ki. ... kn}. Hence, by Proposition 3.9, {0, -es*} is also the supporting hyperspace to 

{{0, -DVk], ie{h... kn}}. Therefore, these two sets lie in the same half space. 

Now, to see that es*(v) < 0, we use the basis ß expressions. 

e'-(v)   =   es\Cß%) 

=   es\AßD-ß%) 

= e*'(["oA IW«) 
Since, <es',DVi>ß> 0,i G {*i...fcn}> the first row of Dt is comPosed of non" 
negative elements by Lemma 3.4. It follows that the first row of Dßlzß = a, a a 

constant, is positive. Therefore, the first row of AßD~ß
x%ß = -Xa. So, es (v) = 

[10 ...0][-Aa .. .]T = -Xa < 0. 

Now, consider the case when m < n. Introduce fictitious DVi,i G {km+x ...kn} 

so that <es\DVi>ß= 0,* G {km+l... kn}, and together with {DVi,i = kl...km} 

they form an n-dimensional linearly independent set. To see that such a choice is 

possible, we show by contradiction a claim that at least one of the existing hyperplanes 

have a non-zero component along es*, i.e., <es',DVi>}^ 0,i G {&i...A;m}. So, 

other planes can be chosen with zero es* component. By assumption, ker(e3 ) = 

Eu © EU D TT^km = r)iqkl...krnker(DVi). If <es',DVi>}= 0,i G {h ...km}, then 

es G n,-6fcl...jbmI>^. But then, es is not in the kernel of es' because e*'{es) = 1. 

First, consider the case when only one fictitious hyperplane DVm+i is intro- 

duced. The convex set {{0,DVi},i = h ... km} is the union of the convex sets 

{{0,DVm+1}A^DVi},i = *!...*„} U{{0,-D7W,{0,W},«' = *i ■■•*«}• As 

an extension, if there are (n - m) such fictitious hyperplanes, then the convex set 

{{0, DVi}, i = ki... km} is the union of all convex sets which contain both negative 

and positive half spaces of all the fictitious planes defined as in the case of one fic- 

titious plane. If all such convex components lie in the same half space of Eu © Es_r, 

then it follows that their union {{0,DPi},i = h...km} also does. Now, consider 

one such convex set. Let the matrix of DV{,i G {h .. .fcn}, be D = [%]. The ficti- 

tious planes DVit i G {km+l... kn}, appear either as themselves or negated. In either 

case, their component along es* is zero i.e., <es*,D'P,>^= 0,« G {km+i...kn}, 
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so that D = [rjij] satisfies the conditions of Lemma 3.4. Now, if we add ficti- 

tious ai = DViA~l,i = km+i...kn, then by the same argument, the convex set 

{{0,a,-},i = &i ••■km} is the union of all convex sets which contain both negative 

and positive half spaces of all the fictitious planes {0,ai},i = km+y ...kn. But, we 

already proved that each such convex set lies in the same half space of Eu © Es_\- o 

Proof of Proposition 1.1: The subspace Eu is the supporting subspace to Zj 

and, therefore, Eu C V for V G W(7? ..,-m,s) (see Definition 3.5). The codimension 

one subset E*_\ of the stable subspace is a subset of TT{\ ,m and, therefore, is also 

contained in V. The linear map A = DX is hyperbolic and, hence, Eu and Ei^ are 

linearly independent. Hence, a span of V is Eu © Ea_v It follows from Lemma 3.5 

that this hyperspace V is a supporting hyperspace of the set {Vk, k = z'i,.. . im} C 

TSM. By definition of a supporting space to a convex set from equation 3.20, the 

supremum is zero and hence function H vanishes. Therefore, point s is a subset of 

the characteristic set C of function H. o 

Dimensional consideration for Proposition 1.1 shows that it is valid for points on 

segments whose codimension m < p+ 1. A corollary below shows that a similar 

assertion follows for points on a segment whose codimension m > p + 1. 

Proof of Corollary 1.1: Consider a point s in the intersection 7^ im C\ Tk\_kq, 

and a sequence of points {sj, i - 0, oo, in 7£...t-m and another sequence {s'fc}, k = 0, oo, 

in T~l k . Let both sequences converge to point s in the intersection. Consider the 

supporting hyperplanes EI^s,-) ©£u(s,-) and ELfä) ®Eu(s[) for points s,- in 7?..,-m 

and s'k in Tk\ k , respectively. Since field Y changes continuously on all segments of 

2j, the unstable subspace and stable subspace change continuously. Hence, J5u(s.) 

and Eu(s'k) converge to the same subspace ^"(s). The corresponding stable subspaces 

also converge to the same subspace. However, the codimension one subspace -El^s.) 

and -EliK) which are subset of the tangent spaces T7?...im and TTk\ Mq, converge to 

different subspaces. Let Hamiltonian H vanish for ß{ € T*M at s; where -Ei^S;) 8 

^(sj) = ker(ßi). It also vanishes for yk € T*M at s'fc where Ei^) © Eu{s'k) = 

ker(ik). Let ßt *^? ß and 7fc 
fc-^? 7. Then, H vanishes at s for both ß and 7.0 

Proof of Theorem 1.2: The proof is in several steps.   First notice that since 

Aj is a subset of the boundary of the singular invariant set SZj, it is a union of 
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proper faces. Therefore, at least p + 1 transition hypersurfaces define the faces of 

A , i.e., codimension m > p+ 1. To see this, note that the unstable subspace Eu 

is a strictly supporting subspace, so by Definition 3.6 Eu D T87^.M-m = 0 at a point 

s € 7£.„,-m. Since, q = dim{l?„Am) < n - 1 and p = dim{Eu) < n - 1, we find 

p + g<n-l=4>g<n-p-l. Hence, m = n-g>p+l. 

Since, the conditions of Proposition 1.1, or Corollary 1.1 are satisfied at all points 

of A,, it follows that it is a subset of the characteristic set C. Hence, Aj is an initial 

manifold. 

The local unstable manifold Wr
u(s) is an image of Eu by a continuous map from 

the tangent space TSM to M [PalMel 82, pp. 73]. And since the intersection Eu n 

T«Tj • of the unstable subspace and the tangent space, is the trivial element, there 

exists a r > 0 so that in a ball 5r(s), the intersection of W?(s) and the transition 

hypersurfaces TJ,k = n .. .im, is isolated. In particular, W?(s) is a subset of the 

supporting quadrants of ball Br(s) where characteristic flow of the cone boundary 

surface is well defined by Proposition 3.10 and Proposition 3.6. The characteristic 

directions of trajectories in the unstable manifold span Eu as they approach s for 

negative time. And since the tangent space to the unstable manifold Wr"(s) at s is Eu, 

which has trivial intersection with the tangent space T87? ..,-„,, Theorem 3.6 implies 

that the integral manifold exists and is uniquely defined. The p-dimensional unstable 

manifold and the (n - p - l)-dimensional Aj together span the (n - l)-dimensional 

surface. Inside ball Br(s), the integral manifold is, therefore, the boundary of the 

forward projection-^ 

This proposition describes a generic situation in that Aj consists of faces of codi- 

mension greater than or equal to p+ 1, and Eu is considered strictly supporting. Ex- 

ample 3.4 is such an illustration. However, if there are faces of codimension smaller 

than p + 1 in Aj or Eu is not strictly supporting, then the local unstable manifold 

Wr
tt of points on such faces must make the face invariant for the forward projection 

to be well defined, as perhaps should be obvious from the proof above. Example 3.5 

shows the boundary of the forward projection of the singular invariant set for such a 

degenerate case. 
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Figure 3.3: Planar Field in Example A 

3.2.11    Examples of the Boundary of Forward Projection of 

Singular Invariant Set 

Example 3.4 (A) Consider example 1.1. The transition hypersurfaces % corre- 

sponding to a hyperplane "P, = {X,, a,} that bounds the convex polytope F° is denned 

by the zero set of a function a,(X,). They are % = -ey(x
2 -x) + ex(y

2 - y) - exey = 0, 

T2 = ey(x
2 -x) + ex(y2 - y) - exey = 0, T3 = ey{x2 - x) - ex(y

2 - y) - exey = 0, and 

fA = -ey(x
2 - x) - ex(y2 — y) — (-x^y = 0. The transition hypersurfaces T\ and % are 

hyperbolas and %. and % are ellipses. Consider the forward projection of the saddle 

singular invariant set Z2. Consider the vertex s = T2
A on the boundary SZ2 as a can- 

didate for a point where conditions of the Proposition 1.1 are satisfied. In this planar 

example, there is a unique field X such that X € Vi4 in some local neighborhood of 

s.   This field is X = {-{x2 -x)- ex)£ - (y2 - y)^.   It is possible to check that 
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X(s) = 0. The linearization of the field at s is hyperbolic. The stable subspace, Ea, is 

along the z-axis and the unstable subspace, Eu, is along the y-axis. The codimension 

one subspace Es_l of the stable subspace is the trivial element which is contained in 

the tangent space of the vertex s, the unstable subspace Eu is a strictly supporting 

subspace and the remaining one-dimensional subspace, which is Es itself, is not con- 

tained in the tangent space of the point. Hence, all conditions of the Proposition 1.1 

are satisfied. It follows from Theorem 1.2 that the local unstable manifold, ^"(s), 

for some r > 0 defines the boundary of the closed set Z2. In this example, it happens 

that the unstable manifolds, Wu{s), is the global boundary of the forward projection 

of the singular invariant set Z2. The situation at the vertex T2\ is symmetric. 

The perturbations of the stable manifolds of Z2 is constructed analogously by con- 

sidering the forward projection of the negative of this differential inclusion problem, 

i.e., the unstable manifolds of the negative fields at the vertices T?3 and T2\.o 

Example 3.5 (B) Though this is an example when M = R3, its obvious extensions 

give examples in all Euclidean spaces of dimensions two or more. Consider a nominal 

vector field Y as in Example A. Let the neighborhood F° be a cube whose six faces 

are parallel to the axes: 

v, = 

v2 = 

v3 = 

v4 = 

vb = 

Vs = 

(-(^-)-4-(y2-4-(^-4,^ 
-(*2 - *)± + (-(/ -») + «,)£- (*2 " *)|> -dvh 

(_(,2_x)+e4_(y2_y)l-(22-2)l,-^, 
-(«»-*) A+ Hy«_tf)-€t)|.-(^-z)|,dy}, 

-^ - *)| - ^ - y)h+(-(z2 -z)+64' -dz]> 
(3.25) 

where ex,ey,ez  > 0 are constants.    Each transition hypersurface is a two sheeted 

hyperplane defined by: Tj = -x2+x-ex = 0, T2 = y2-y-ey = 0, T3 = x2-x-ex = 0, 
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Figure 3.4: Example B 

T4 = -y2 + y-ey = 0,T5 = -z2 + z - ez = 0, and % = z2 - z - ez = 0. The Singular 

Invariant Sets Zi,i — 1,8 are centered at the eight vertices of the cube with body 

diagonal (0,0,0) and (1,1,1). The invariant subset around (0,0,0) is a source, around 

(1,1,1) is a sink and the remaining invariant subsets are saddles. 

Consider the forward projection of the saddle at (0,1,1). The unstable subspace 

Eu is one-dimensional along the x-axis. The stable subspace Es is two-dimensional 

and is spanned by the y-axis and z-axis. The subset Aj of S2j where the conditions of 

Proposition 1.1 are satisfied consists of the transition hypersurfaces T£,k = 2,4,5,6 

and all other segments in their closure. The local forward projection of Zj is defined by 

the unstable manifold of these points. They are subsets of the transition hypersurfaces 

Tlk = 2,4,5,6.o 



Chapter 4 

Conclusion 

Fine Motion Planning is essential where the success of a goal-oriented behavior of 

a physical system is determined largely by uncertainties: in control equations that 

determine its evolution, in sensing that is used to determine the attainment of a goal, 

and in the shape or model of the environment that can only be engineered upto a 

prescribed accuracy. The domain of application of fine motion planning is assembly 

and dextrous manipulation of parts using mechanical manipulators, navigation of a 

mobile robot, goal-oriented behavior of a hopping robot, design of mechanical parts for 

ease in assembly, and design of mechanical parts feeder. In this thesis, we considered 

uncertainty in control and sensing. 

4.1     Characterization of Control Uncertainty 

In classical control theory, when a controller for a linear or a non-linear system is 

shown to be robust, the system rejects some disturbance or noise, stays stable and 

close to a nominal behavior. However in fine motion applications, the success of 

attaining the goal depends substantially on the perturbations from a nominal behav- 

ior. A few of the factors contributing to perturbations are errors in placement of 

parts relative to each other, tolerances in the shape and the size of the parts, the 

mechanics of motion in the presence of friction, transition from one contact type to 

another, deterministic but imprecisely known inertial properties of the system, and 

94 
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non-deterministic sensor measurement noise. 

If a nominal behavior is described by assigning a velocity (acceleration) to each 

state, then all possible perturbations can be described by assigning to a subset of 

the velocities (accelerations) each state. Evolutions of such problem are considered 

in Differential Inclusion. We considered solutions that are absolutely continuous: the 

evolution is continuous and the set of discontinuities of the derivative of the evolution 

is a set of measure zero. All such evolutions are path connected when the multivalued 

map is non-empty, closed, autonomous, and Lipschitz [StWu 91]. Although, Lipschitz 

condition is fairly weak, the equations of motion are not even continuous at places 

where a rigid body motion changes the type of contact with another rigid body. A 

model of impact, however, can be used to predict the initial conditions of the motion 

after impact. The mechanics of motion in the presence of friction may introduce 

additional such constraints. 

In the region where the set of evolutions are path-connected, we gave conditions 

for the uniqueness and existence of an initial manifold on the local boundary of the 

forward and back projections of a regular closed set. This result is a direct application 

of the Hamilton-Jacobi Theorem to a Hamiltonian system. The boundary of forward 

and back projections is foliated by the solutions of a Hamiltonian system [BIFi 86, 

But 82]. They are ordinary differential equations with initial states in the initial 

manifold. If n is the dimension of the state space, there are 2n ordinary differential 

equations in the system. 

The phase portrait of a single-valued non-linear dynamical system is dominated 

by the behavior of its invariant set: the singularities of the vector field, closed orbits, 

the stable and unstable manifolds of such singularities, and other non-wandering 

sets [Smale 67, PalMel 82]. The basin of attraction of a sink singularity is a natural 

candidate for a Preimage. Such basins of attraction are bounded by the stable and 

unstable manifolds. 

We introduced singular invariant sets for multivalued vector fields that are anal- 

ogous to the singularities of a single-valued system. We gave conditions when the 

boundary of the perturbations of the stable and unstable manifolds exist and are 

unique. They characterize the boundary of the basin of attraction of a sink singular 
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invariant set for a multivalued vector field. 

4.2    Fine Motion Planning 

Aside from characterizing control uncertainty, a fine motion planner must also con- 

struct a boolean valued function, called termination condition, on the set of possible 

sensing. The true condition of this function is interpreted as having attained the goal. 

Interpretations of sensing that are mutually consistent and interpretations that de- 

pend on possible initial states of the system were known in this framework. However, 

the fact that the sensing interpretations also depend on the termination condition 

is a new observation. We gave an example when embedding this knowledge in the 

construction of a preimage augments the size of the preimage. 

In summary, we gave new results on One-Step Preimage, and a characterization 

of the control uncertainty for an autonomous non-linear continuous time dynamical 

system. 
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